Alkanole

  • 4.1.2 Halbacetalbildung bei Zucker (z.B. Glucose)

    a) Strukur eines Aldehyds (Alkanals)

    Folgende Abbildung zeigt, wie eine Aldehydgruppe angegriffen werden. Durch die höhere Elektronegativität des Sauerstoffatoms werden die Elektronen vom Kohlenstoff weg hin zum Sauerstoff gezogen (polare Atombindung). Dadurch kann am Kohlenstoff ein nucleophiles (kernliebendes Teilchen) angreifen. Nucleophile Teilchen besitzen ein freies Elektronenpaar, mit dem es angreifen kann. 

    Der Sauerstoff der Aldehydgruppe besitzt ein freies Elektronenpaar. Hier kann ein elektrophiles Teilchen (wie z.B. ein H+ (Proton)) angreifen. 

    Strukturformel eines Aldehyds. C ist positiviert und kann nucleophil angegegriffen werden; Sauerstoff besitzt eine negative Partialladung und ein freies Elektronenpaar und kann von einem elektrophilen Teilchen angegriffen werden.


    Das Aldehydmolekül enthält eine polare Doppelbindung mit freien Elektronenpaaren; Additionsreaktionen sind möglich. 

     

    b) Aldehyd + Alkohol (AN-Reaktion = nucleophile Addition)


    Reaktionsgleichung in Strukturformel zur Billdung eines Halbacetals

    Halbacetale kann man selten isolieren (Ausnahme: Zucker). Ein Halbacetal kann mit Alkohol zu einem Vollacetal weiterreagieren (vgl. Disaccharide). 

  •  

    4.1.3 Ringstruktur der Monosaccharide 

    Widersprüche:

    • Schiffsche Reagenz (typ. Nachweis für Aldehyde) zeigt keine Farbreaktion.
    • Drehwinkel in wässriger Lsg. 52,7° statt 112,2°.
    • Tollens (1883) schloss daraus, dass Glucose nicht in der offenen Aldehydform vorliegt. 
    • Die Ursache hierfür ist in der intramolekularen Verknüpfung der Carbonylgruppe mit einer Hydroxylgruppe des gleichen Zuckermoleküls zu suchen. Es kommt also zu einer innermolekularen Halbacetalbildung.

    nucleophiler Angriff bei der Ringbildung



    Haworth-Schreibweise

    • zyklisches Glucose Molekül wird als liegendes Sechseck [Pyranosen] oder Fünfeck [Furanosen] gezeichnet;
    • Ringsauerstoffatom findet sich in der rechten hinteren Ecke [Pyranosen] bzw. im hinteren Eck [Furanosen];
    • Substituenten, die in der FISCHERprojektion nach links weisen, stehen in der HAWORTH-Projektion oben ["Kommunistenregel"]

     Ringbildung bei Glucose in der Hawoarth-Projektion

    Erklärung der negativen Reaktion der Glucose mit der Schiffschen Reagenz: Es liegt ein Gleichgewicht zwischen der offenen Kette und dem Ring vor, wobei der Anteil der offenen Kette, bei der wirklich ein Aldehyd vorliegt verschwindend gering ist (<  1%): 


    Aldehydform (offenkettig) ⇌ Halbacetalform (Ring)

    • Fuchsinschweflige Säure (Schiffsches Reagenz) bildet mit dem Aldehyd eine reversible (umkehrbare) Reaktion, daher findet kein Entzug des Aldehyds statt. Das heißt, es gibt keine GG-Verschiebung und damit keinen wirklichen Aldehydnachweis (der Anteil an offener aldehydhaltigen Glucose ist zu gering). 
    • Bei der Fehling-Probe und der Tollens-Probe (Silberspiegel) findet eine GG-Verschiebung statt! Die offene Form wird laufend entzogen, neue Ringe gehen auf und es findet langsam der Aldehydnachweis statt. 

     

     

    Durch Ringbildung entstehen 2 Strukturisomere der D-(+)-Glucose (keine Spiegelbildisomere).

     

    Mutarotation und Ringbildung von Glucose

    In wässriger Lösung liegen vor:

                      36%                                           0,26%                                                                64%

    Drehwinkel: 112,2°                                                                                                                   18,7°

       

    Es entsteht ein neues asymmetrisches C-Atom (= anomeres Kohlenstoffatom) und damit 2 Diasteromere. Anomere = Isomere, die sich nur durch die Stellung der Hydroxylgruppen am anomeren Kohlenstoffatom unterscheiden. 

    α-Form: OH-Gruppe am neuen asymmetrischen C-Atom liegt auf derselben Seite wie die am untersten asymmetrischen C-Atom. 

    Muta1rotation: Drehwinkel einer Lösung einer optisch aktiven Substanz ändert sich vom Zeitpunkt des Ansetzens der Lösung kontinuierlich bis zum Erreichen eines festen Wertes. Grund dafür ist, dass man z.B.  α-Glucose in eine wässrige Lösung gibt. Sobald sich das Molekül in Wasser löst, öffnen sich einige wenige Moleküle. Bei der erneuten Ringbildung, bildet sich auch β-Glucose. Erst wenn sich der Anteil wie oben angegeben einstellt, ändert sich der Drehwinkel nicht mehr. 

    Glucose α-Form ⇌ offene Form ⇌ β-Form

    Bei Glucose ist der Endwert: 0,36  *  112,2°    +    0,64  *  18,7°  =  52,36°



    Haworth-Schreibweise
    Achtet auf die Durchnummerierung der C-Atome. Am C1 war ursprünglich die Aldehydgruppe. 

    Glucose Rinigstrukturen in der Haworth-Schreibweise

    α-D-Glucose β-D-Glucose

    Nachweis von Glucose: GOD-Test (Glucose-Oxidase-Stäbchen); Achtung beim schriftlichen Abitur: Fehling oder Tollens ist kein Nachweis für Glucose, sondern nur für Aldehydgruppen!

    • Glucose-Oxidase = Enzym: Oxidiert Glucose am C1-Atom zu Gluconsäure und Wasserstoffperoxid (H2O2).
    • Durch das Enzym Peroxidase (z.B. aus Meerettich) wird das Wasserstoffperoxid zu Wasser reduziert. 
    • je mehr Glucose, umso intensiver die Farbe. 
      Im Handel als Teststreifen für Diabeteserkrankung.

     

    -----

    1: Lat. mutare = ändern 

  • 4.1.5 Fructose = Fruchtzucker

    Vorkommen: in Früchten, Nektar, Honig; vor allem industriell hergestellte Fructose
    Eigenschaften: kristallisiert schlecht aus wässriger Lösung → sirupartige Flüssigkeit. 

    Summenformel: C6H12O6
    Fructose ist somit ein Strukturisomer der Glucose.

    a) Seliwanow-Probe 

    Versuchsaufbau: Seliwanow im Wasserbad; Fructose wird rosa / rot; Glucose und Seliwanow bleiben farblos

    Nachweis, ob es sich bei Kohlenhydraten um Ketosen oder Aldosen handelt.
    Ketose --> roter Farbstoff
    Aldose --> keine/langsame Reaktion --> farblos


    Info: Die Seliwanow-Reaktion ist ein Nachweis für Ketohexosen in der Furanose-Ringform. Da sie im sauren Milieu abläuft, kommt es nicht zur Keto-En(di)ol-Tautomerie. Mit Glucose fällt die Probe deshalb negativ aus.

    Strukturformeln: Offenkettige und Ringbildung durch die Halbacetalbildung: 

     Strukturformeln der Fructose 

     

    Fructose bildet wie Glucose Anomere. Neben der Kettenform des Moleküls enthält das Gleichgewicht zwei anomere Pyranosen ( β-D-Fructose und α-D-Fructose; Halbacetalbildung mit dem C5-Atom) und zwei anomere Furanosen ( β-D-Fructose und α-D-Fructose; Halbacetalbildung mit dem C6-Atom).   


    Alle anomere Fructose-Moleküle in Fischer- und Haworth-Projektion





    Keto-Enol -Tautomerie

    Versuche mit Fructose: 

    • Fehling →  positiv
    • Tollens →  positiv
    • GOD (Glucose-Nachweis) + Lauge →  positiv

    Funktioniert nicht mit einer Ketogruppe, da diese nicht weiter oxidiert werden kann. Grund, warum die Nachweise trotzdem positiv verlaufen: Innermolekulare Umlagerung unter Protonenwanderung und Elektronenverschiebung. 

    Strukturformel - Reaktionsgleichung der Keto-Enol-Tautomerie in Lewis-Schreibweise 

     Genauer: 

    Mechanismus der Keto-Enol-Tautomerie in Lewis-Schreibweise

     

    Glucose und Fructose stehen im Gleichgewicht (Glucose überwiegt); bei der Oxidation von Glucose wird Glucose aus dem GG entfernt →  Fructose wird aufgebraucht.

  • zu 4.1.7 Reaktionen der Monosaccharide 

    Glycosidbildung (~Halbacetal, Vollacetal)

    a) Aldehyd + Alkohol          ⇌           Halbacetal (nucleophile Addition) 

    b) Halbacetal  + Alkohol         ⇌            (Voll)Acetal + Wasser        

    Typische Kondensationsreaktion (unter Wasserabspaltung)

     

    Beispiel:
    β-D-Glucose + Methanol ⇌ β-Methyl-Glucosid + Wasser

     

    Reaktionsgleichung mit Lewis-Formel - Reaktion von Alkohol und Glucose unter Bildung eines Glycosids



    Zucker           +                      Alkohol          ⇌                     Glycosid                           +  Wasser
    Fructose         +                      Alkohol          ⇌                    Fructosid                          + Wasser
    Glucose         +                       Alkohol          ⇌                    Glucosid                            + Wasser

    Reaktionen von Zuckern untereinander ergeben Di-, Oligo- und Polysaccharide

  • 4.1.6 Galactose = Schleimzucker

    Unterscheidet sich von der Glucose durch die Stellung der Hydroxylgruppe am dritten asymmetrischen C-Atom. Kommt in den Schleimhäuten vor (Name!).  

    4.1.7 Reaktion der Monosaccharide

    a) Oxidation zu Polyhydroxysäuren  

    Bei gelinder Oxidation der Aldosen geht nur die Aldehydgruppe in die Carboxylgruppe über. Durch stärkere Oxidation der Aldosen (z.B. mit konz. HNO3) wird nicht nur die Aldehyd- sondern auch die primäre Alkoholgruppe in die Carboxylgruppe überführt. 

     

    Lewis-Formeln Glucose zu Gluconsäure und Dicarbonsäure

    b) Reduktion zu Zuckeralkoholen
    Die Monosaccharide lassen sich z.B. katalytisch mit Wasserstoff zu mehrwertigen Alkoholen reduzieren.

    Lewis-Schreibweise: Reduktion von Monosacchariden zu Alkoholen

     

  • 5.1.3 Formelermittlung von Ethanol

    I. Qualitative Elementaranalyse

    Versuch 1: Verbrennungsanalyse

     05 01 03 verbrennungsanalyse

    • Ethanol verbrennt zu Wasser und Kohlenstoffdioxid;
    • Nachweis von CO₂: Kalkwasser (weißer NS)
    • Nachweis von H₂O: Watesmo-Papier wird blau

    1. Ergebnis: Ethanol enthält somit zumindest C und H.


    Versuch 2: Ethanol reagiert mit Magnesium - Sauerstoffnachweis

    Versuchsaufbau: Ethanol reagiert mit Magnesium - Sauerstoffnachweis

    Durchführung: 

    1. Aufbau siehe Abbildung
    2. Zunächst wird das Magnesiumband zum Glühen gebracht
    3. Danach verdampft man den Alkohol, der über das glühende Magnesiumband streicht. 

    Beobachtung:

     Sobald Ethanol über das glühende Magnesiumband streicht glüht dieses heller auf und es bleibt ein kristalliner weißer Feststoff (Magnesiumoxid) übrig. 

    Ergebnis:

    • Ethanol reagiert mit Magnesium u.a. zu Magnesiumoxid
    • Ethanol enthält zumindest C, H und O.

    II. Molekülmassenbestimmung (Verdampfungsmethode)

    Hinweis: Dieser Versuch nur bei ausreichender Zeit durchgeführt. Nicht wundern, falls ihr das nicht im Heft stehen habt (dann kommt es auch in der Klausur nicht dran). 

    Literaturwert: M(Ethanol) = 46 g/mol.

     

    _______________

    SATP-Bedingungen (Standard Ambient Temperature and Pressure)

     

  • III. Quantitative Elementaranalyse

    46g Ethanol ergeben bei der Verbrennung 88 g CO₂ und 54 g H₂O

    • in 2 mol CO₂ sind 2 mol C (24g) enthalten
    • in 3 mol H₂O sind 6 mol H (6g) enthalten

    46 g Ethanol enthalten somit 2 mol C (24g) und 6 mol H (6g) und 1 mol (16g). 
    Atomzahlverhältnis im Ethanol: C : H : O = 2 : 6 : 1
    Verhältnisformel: C₂H₆O₁
    Molekülformel: C₂H₆O (Molekülmasse = 46u)

    IV. Ermittlung der Strukturformel von C₂H₆O
    Zwei Möglichkeiten:

     04 ta strukturformel ethanol        04 ta methylether 
     Struktur a   Struktur b
    Hier hat das Wasserstoffatom eine Sonderstellung, da es durch die polare Atombindung mit Sauerstoffatom stark positiviert ist   Alle Wasserstoffatome sind gleich gebunden. Sie sind nicht (oder kaum) positiviert 
       ZMK  

     Hoher Siedepunkt: 

    • Wasserstoffbrückenbindung
    • Dipol-Dipol-Wechselwirkung
    • van-der-Waals-Kräfte
     

     "Normaler" Siedepunkt (bei Zimmertemperatur gasförmig): 

    • nur van-der-Waals-Kräfte
         
    Ethanol könnte (wie Wasser) als schwache Säure reagieren.     


    Wichtig: Ethanol und Dimethylether sind Derivate (Abkömmlinge) des Wassers.

    Beide Strukturen leiten sich vom Wasser ab, jedoch ist Struktur a wasserähnlicher. 

    Abkömmlinge des Wassers 


    R1 = - C₂H₅ (Ethylrest)
    R2 = - CH₃ (Methylrest)
    Siedepunkt: Struktur a +78°C und Struktur b -25°C

    Um herauszufinden, welche dieser Strukturen auf Ethanol zutrifft bitte nächste Seite anschauen. 

  • 5.1.5 Induktiver Effekt

    Ausschlaggebend: Elektronegativität der Substituenten (Atomgruppen, Atome). Dabei werden Elektronen über mehrere Bindungen angezogen oder „abgestoßen“.

    Reichweite: 3 benachbarte Bindungen.  


    (-I)-Effekt (sprich: „minus I Effekt“; „negativer I Effekt“).

     • Substituenten (Atomgruppen) mit höherer Elektronegativität (Bsp.: Halogene, Sauerstoff-Verbindungen,...)• „Elektronenziehend“:

    Ziehen Bindungselektronen zu sich

    Negativer induktiver Effekt


    Auswirkung: z.B. Erleichterte Abspaltung eines Protons; Alkohol kann als Säure reagieren. 


    (+I)-Effekt (sprich: „plus I Effekt“; positiver I Effekt)

    Elektropositiveren Substituenten (Bsp.: Alkylgruppen)

    „Elektronenschiebend“: 

    positiver induktiver Effekt

    Auswirkung: z.B. geringere Säurestärke 
    Keinen I-Effekt haben Wasserstoffatome.