Chiral

  • Naturstoffe

    1   Isomerie:

     

    Isomere[1]: Zwei Verbindungen mit gleicher Summenformel, aber unterschiedlicher chemischer Struktur. Isomere unterscheiden sich teilweise in ihren physikalischen, biologischen und chemischen Eigenschaften.

     

    Grafik die die unterschiedlichen Isomerien zeigen

     

    Chiral[2]: Objekte, deren Spiegelbild nicht durch Drehung mit dem Original in Deckung gebracht werden können.

    Achiral: Objekte, deren Spiegelbild durch Drehung in Deckung gebracht werden können.




     



    [1] Isos (gr) = gleich; Meros (gr) = Teil

     [2] Chiral: cheir (gr) = Hand, Händigkeit
  • 2 Fischer-Projektion

    Regeln und Reihenfolge:

    1. C-Gerüst senkrecht
    2. höchstes oxidiertes C-Atom oben (Oxidationszahl)
    3. beide C-C-Bindungen am mittleren C-Atom zeigen nach hinten (hinter die Papier-Ebene)
    4. beide horizontale Bindungen am mittleren, asymmetrischen C-Atom (H-C-; H-O-C-Bindung) zeigen nach vorne.
    5. Das Isomer, bei dem die Substituentengruppe mit dem elektronegativsten Atom in der Fischer-Projektion rechts steht, wird mit D[1] bezeichnet; steht der Substituent links, dann wird er mit L[2] bezeichnet.

    Beispiel
    a) Milchsäure: 2 Hydroxypropansäure
    Strukturformel in Fischerprojektion der L- und D-Milchsäure

    Im folgenden die D-Milchsäure

     

    Kalottenmodell der Milchsäure

     c) Weinsäure (2,3-Dihydroxybutan-1,4-Dicarbonsäure)

     Strukturformeln der Weinsäure (D, L und meso-Weinsäure)

     

    Hat eine Verbindung n asymmetrische C-Atome, so gibt es meist 2n Stereoisomere. Stereoisomere, die keine Enantiomere sind, heißen Diastereomere und haben verschiedene physikalische Eigenschaften. 

    Substanzen, deren Moleküle mit ihren Spiegelbildern übereinstimmen, obwohl sie Chiralitätszentranen besitzen, heißen meso-Verbindungen ("Das Spiegelbild des Originals kann durch Drehung wieder genau so aussehen, wie das Original). Sie besitzen eine Spiegelebene im Molekül. 

    ----------------- 

    [1] D = dexter (lat) = rechts
    [2] L = laevus (lat) = links

  • 3. Optische Aktivität und Polarimeter

    Beim Durchgang von polarisiertem Licht durch die Lösung eines Enantiomeren erfährt die Polarisationsebene eine Drehung um einen bestimmten Betrag nach rechts oder links. Das andere Enantiomere dreht die Polarisationsebene des Lichtes um den gleichen Betrag in die entgegengesetzte Richtung. 

    Funktionsweise eines Polarimeters

    Der Drehwinkel α ist direkt proportional der: 

    • Massenkonzentration β  
    • Länge l des Probenrohrs

    Der Proportionalitätsfaktor αsp hat einen für die optisch aktive Verbindung charakteristischen Wert. Er wird spezifische Drehung genannt. Sie wird bei 20 °C mit dem Licht einer Natrium-dampflampe bestimmt, das heißt mit Licht der Wellenlänge λ = 589,3 nm.


    Schreibweise:
    (+): rechtsdrehende Verbindungen
    (-): linksdrehende Verbindung

    Racemat (racemische Mischung, Raceform): äquimolares Gemisch der Enantiomere; dreht das polarisierte Licht nicht.  

  • 4.1 Monosaccharide

    4.1.1 Glucose - Traubenzucker

    Vorkommen: Trauben, Früchte

    a) physikalische Eigenschaften

    • Aggregatzustand: fest; Schmelzpunkt um 146°C; weiteres Erhitzen führt zur Zersetzung. 
      Folgerung: Glucose besitzt hohe zwischenmolekulare Kräfte (Vermutung: H-Brückenbindung) und van-der-Waals-Kräfte. 

     

    • Löslichkeit
      Glucose löst sich sehr gut in Wasser (67g/100ml), dagegen löst sich Glucose nicht in Benzin. Eine wässrige Glucoselösung zeigt (fast) keine elektrische Leitfähigkeit.
      Folgerung: Glucose enthält polare Gruppen, die mit Wasser H-Brücken eingehen können. Es entsteht keine Ionen.

    b) qualitative Elementaranalyse

    Reaktion von Glucose mit konzentrierter Schwefelsäure:

    Versuchsskizze Glucose mit Schwefelsäure im Reagenzglas unter Entstehung von Zuckerkohle

    Folgerung: Glucose enthält Kohlenstoff.
    Mitteilung: Glucose enthält neben C noch H und O.


    c) quantitative Elementaranalyse
    Die quantitative Elementaranalyse nach Liebig ergibt:
     3,6 g Glucose liefert bei der Verbrennung:

    • 5,28 g CO2
    • 2,16 g H2O


    Glucose besitzt folgende Summenformel: CnH2nOn
    Von dieser allgemeinen Formel [C(H2O)]n leitet sich die Bezeichnung Kohlenhydrate ab.
    Hinweis: Im Heft folgen jetzt die Arbeitsanleitung zur Strukturaufklärung (mit den diversen Experimenten). Hier folgt jedoch gleich das Ergebnis. Die Reaktionsgleichungen von Fehling und Tollens-Reagenz finden sich dann auf anderen Seiten. 

    Ergebnis:
    Glucose ist ein Polyhydroxyaldehyd, genauer Pentahydroxyhexanal, ein Aldehydzucker oder Aldose.
    Aldose = Monosaccharide, mit terminaler Carbonylgruppe (Aldehyd)
    Ketosen = Monosaccharide, mit nicht endständiger Carbonylgruppe (Keton).


    Fischerprojektion:
    Es gelten folgende Regeln:

     Glucose in der Strukturformel als Fischer-Projektion

    • Die C-C-Kette wird senkrecht geschrieben.
    • Die am höchsten oxidierte Gruppe steht oben.
    • Die C-C-Bindungen sind bei jedem C-Atom nach hinten abgewinkelt;
    • dann zeigen die waagrechten Bindungen nach vorne;
    • Bei der offenen Glucoseform gibt es vier asymmetrische C-Atome ==> 24-Isomere;
    • Die Bezeichnung erfolgt nach dem untersten C-Atom (hier C5-Atom). 
    • Da die OH-Gruppe rechts steht ==> D-Konfiguration.
    • ==> D-(+)-Glucose 

     


    (L-Glucose erhält man nur synthetisch)

    Bildung von Glucose:
    Bei Pflanzen (Fotosynthese) und Tieren (durch Abbau von anderen Molekülen).

    Fotosynthese:
    Fotosynthesegleichung: 6 CO2 + 12 H2O reagieren unter Licht zu Glucose + 6 O2 und 6 H2O

    60 Mrd t Kohlenstoff werden dabei im Jahr gebunden.

    Abbau von Glucose:
    Bei der Zellatmung (Pflanzen, Pilze, Tiere)

    Reaktionsgleichung der Zellatmung

  •  

    4.1.3 Ringstruktur der Monosaccharide 

    Widersprüche:

    • Schiffsche Reagenz (typ. Nachweis für Aldehyde) zeigt keine Farbreaktion.
    • Drehwinkel in wässriger Lsg. 52,7° statt 112,2°.
    • Tollens (1883) schloss daraus, dass Glucose nicht in der offenen Aldehydform vorliegt. 
    • Die Ursache hierfür ist in der intramolekularen Verknüpfung der Carbonylgruppe mit einer Hydroxylgruppe des gleichen Zuckermoleküls zu suchen. Es kommt also zu einer innermolekularen Halbacetalbildung.

    nucleophiler Angriff bei der Ringbildung



    Haworth-Schreibweise

    • zyklisches Glucose Molekül wird als liegendes Sechseck [Pyranosen] oder Fünfeck [Furanosen] gezeichnet;
    • Ringsauerstoffatom findet sich in der rechten hinteren Ecke [Pyranosen] bzw. im hinteren Eck [Furanosen];
    • Substituenten, die in der FISCHERprojektion nach links weisen, stehen in der HAWORTH-Projektion oben ["Kommunistenregel"]

     Ringbildung bei Glucose in der Hawoarth-Projektion

    Erklärung der negativen Reaktion der Glucose mit der Schiffschen Reagenz: Es liegt ein Gleichgewicht zwischen der offenen Kette und dem Ring vor, wobei der Anteil der offenen Kette, bei der wirklich ein Aldehyd vorliegt verschwindend gering ist (<  1%): 


    Aldehydform (offenkettig) ⇌ Halbacetalform (Ring)

    • Fuchsinschweflige Säure (Schiffsches Reagenz) bildet mit dem Aldehyd eine reversible (umkehrbare) Reaktion, daher findet kein Entzug des Aldehyds statt. Das heißt, es gibt keine GG-Verschiebung und damit keinen wirklichen Aldehydnachweis (der Anteil an offener aldehydhaltigen Glucose ist zu gering). 
    • Bei der Fehling-Probe und der Tollens-Probe (Silberspiegel) findet eine GG-Verschiebung statt! Die offene Form wird laufend entzogen, neue Ringe gehen auf und es findet langsam der Aldehydnachweis statt. 

     

     

    Durch Ringbildung entstehen 2 Strukturisomere der D-(+)-Glucose (keine Spiegelbildisomere).

     

    Mutarotation und Ringbildung von Glucose

    In wässriger Lösung liegen vor:

                      36%                                           0,26%                                                                64%

    Drehwinkel: 112,2°                                                                                                                   18,7°

       

    Es entsteht ein neues asymmetrisches C-Atom (= anomeres Kohlenstoffatom) und damit 2 Diasteromere. Anomere = Isomere, die sich nur durch die Stellung der Hydroxylgruppen am anomeren Kohlenstoffatom unterscheiden. 

    α-Form: OH-Gruppe am neuen asymmetrischen C-Atom liegt auf derselben Seite wie die am untersten asymmetrischen C-Atom. 

    Muta1rotation: Drehwinkel einer Lösung einer optisch aktiven Substanz ändert sich vom Zeitpunkt des Ansetzens der Lösung kontinuierlich bis zum Erreichen eines festen Wertes. Grund dafür ist, dass man z.B.  α-Glucose in eine wässrige Lösung gibt. Sobald sich das Molekül in Wasser löst, öffnen sich einige wenige Moleküle. Bei der erneuten Ringbildung, bildet sich auch β-Glucose. Erst wenn sich der Anteil wie oben angegeben einstellt, ändert sich der Drehwinkel nicht mehr. 

    Glucose α-Form ⇌ offene Form ⇌ β-Form

    Bei Glucose ist der Endwert: 0,36  *  112,2°    +    0,64  *  18,7°  =  52,36°



    Haworth-Schreibweise
    Achtet auf die Durchnummerierung der C-Atome. Am C1 war ursprünglich die Aldehydgruppe. 

    Glucose Rinigstrukturen in der Haworth-Schreibweise

    α-D-Glucose β-D-Glucose

    Nachweis von Glucose: GOD-Test (Glucose-Oxidase-Stäbchen); Achtung beim schriftlichen Abitur: Fehling oder Tollens ist kein Nachweis für Glucose, sondern nur für Aldehydgruppen!

    • Glucose-Oxidase = Enzym: Oxidiert Glucose am C1-Atom zu Gluconsäure und Wasserstoffperoxid (H2O2).
    • Durch das Enzym Peroxidase (z.B. aus Meerettich) wird das Wasserstoffperoxid zu Wasser reduziert. 
    • je mehr Glucose, umso intensiver die Farbe. 
      Im Handel als Teststreifen für Diabeteserkrankung.

     

    -----

    1: Lat. mutare = ändern