Organische Chemie

  • Naturstoffe

    1   Isomerie:

     

    Isomere[1]: Zwei Verbindungen mit gleicher Summenformel, aber unterschiedlicher chemischer Struktur. Isomere unterscheiden sich teilweise in ihren physikalischen, biologischen und chemischen Eigenschaften.

     

    Grafik die die unterschiedlichen Isomerien zeigen

     

    Chiral[2]: Objekte, deren Spiegelbild nicht durch Drehung mit dem Original in Deckung gebracht werden können.

    Achiral: Objekte, deren Spiegelbild durch Drehung in Deckung gebracht werden können.




     



    [1] Isos (gr) = gleich; Meros (gr) = Teil

     [2] Chiral: cheir (gr) = Hand, Händigkeit
  • 1. Alkane

    1.1 Methan

    1.1.1 Vorkommen: 

    im Erdgas, Sumpfgas, Biogas, Grubengas

    1.1.2 Eigenschaften:

    • farb- und geruchloses Gas
    • geringere Dichte als Luft
    • brennbar

    1.1.3 Ermittlung der Summenformel (Molekülformel) und Strukturformel

    a) Qualitative Analyse (Elementaranalyse)

    Hierfür wird der zu untersuchende Stoff verbrannt und die Verbrennungsprodukte werden bestimmt. 

    Bildet sich Wasser, wird Wasserstoff als Element vorhanden sein;
    Kohlenstoff kann man einmal als Ruß (bei unvollständiger Verbrennung) oder als Kohlenstoffdioxid nachweisen. Der Kohlenstoffdioxid-Nachweis erfolgt mit der Kalkwasserprobe. Hierfür wird das entstandene Gas in Kalkwasser eingeleitet. Trübt sich die Lösung, ist Kohlenstoffdioxid vorhanden. 

     Versuchsaufbau zur Elementaranalyse von Methan mit Kühlfalle (für den Wassernachweis) und einer Waschflasche mit Kalkwasser (CaOH2).

    1. Nachweis von Wasserstoff  →  Bildung von Wasser →  WaTesMo-Papier oder wasserfreies Kupfersulfat.
    2. Nachweis von C → Bildung von CO2 →   Nachweis als CaCO3
      Ca(OH)2 (aq) + CO2 (g) →  CaCO3 (s) + H2O (l)

    Die Verbrennungsprodukte (Wasser, Kohlenstoffdioxid) ergeben, dass Methan Kohlenstoff, Wasserstoff und eventuell Sauerstoff enthält


    b) Bestimmung der molaren Masse
    Mit Hilfe der Gaswägung kann man die Molare Masse von Methan bestimmen: M(Methan) = 16 g/mol
    Molekülmasse von Methan 16 u


    c) Summenformel:
    Daraus ergibt sich folgende Summenformel.
    CH4

    d) Strukturformel

    Man zeichnet Methan meist mit einem Winkel von 90°. Dieser Winkel entspricht nicht  dem Bindungswinkel (vgl. unten). Man kann sich aber vorstellen, dass man direkt auf das Molekül wie in der zweiten Abbildung dargestellt wird, blickt. 

     Lewis-Formel - Strukturformel von Methan                   Kugelstabmodell eines Methanmoleküls in der Draufsicht.

    Tetraedrische Anordnung der Wasserstoffatome um das Kohlenstoffatom (Bindungswinkel 109,5 °).  

    Erklärung: Größtmögliche Entfernung der Wasserstoffatome. 


    1.1.4 Vollständige Verbrennung:

         0            -IV  +I               +IV  -II                +I  -II
    2 O2 +      CH4     →     CO2         + 2 H2O           ΔH = - 888 kJ/mol

    Verbrennung von Methan - Redoxreaktion

    Hinweis: Wenn die Ermittlungs der Oxidationszahlen Schwierigkeiten macht, dann kann man es hier nochmals nachlesen

    1l Methan benötigt zur vollständigen Verbrennung 10 Liter Luft (2 l Sauerstoff).

  • Hinweis: 1.2 Ethan und 1.3 Propan wird nur bei ausreichend Zeit und entsprechend vorrätigen Chemikalien als einzelne Punkte besprochen. Da es aber sowieso ähnlich ist, wird an dieser Stelle auf den Heftaufschrieb verzichtet (vgl. weiter unten: Homologe Reihe).

    1.4 Butan

    1.4.1 Vorkommen

    im Erdgas, fällt an bei der Benzingewinnung

    1.4.2 Eigenschaften

    farbloses Gas, größere Dichte als Luft
    brennbar (Verbrennungsprodukte bei vollständiger Verbrennung: CO2 und H2O )
    unter Druck leicht verflüssigbar


    1.4.3 Ermittlung der Summenformel (Molekülformel) und Strukturformel

    a) Qualitative Analyse (Elementaranalyse)

    Versuchsaufbau: Verbrennungsanalyse von Butan; dabei wird das von einem Kartuschenbrenner verbtrannte Gas aufgefangen und das kondensierte Wasser und das entstandene Kohlenstoffdioxid nachgewiesen
    Die Verbrennungsprodukte (Wasser, Kohlenstoffdioxid) ergeben, dass Methan Kohlenstoff, Wasserstoff und eventuell Sauerstoff enthält

    b) Bau und Formeln

    1. Molare Masse = 58,12 g/mol
    Molekülmasse = 58,12 u

    2. Summenformel:

    C4H10

     

    3. Strukturformel:

    a) unverzweigte Kette                                           b) verzweigte Kette  

    Strukturformel von n-Butan                                  Strukturformel von 2-Methyl-Propan bzw. Isobutan

    n-Butan                                                                        Isobutan = 2-Methyl-Propan
    Sdp.: - 0,5 °C                                                                Sdp.: - 12 °C

    ZMK: nur van-der-Waals-Kräfte; bei n-Butan können sich die Moleküle dichter zusammenlagern und haben dadurch stärkere Zwischenmolekulare Kräfte, d.h. eine etwas höhere Siedetemperatur. 

    Räumliche Strukturen im Kugelstabmodell. Versucht die einzelnen Abbildungen Isobutan oder n-Butan zuzuordnen. Der Vorteil von Kugelstabmodelle sind, dass sie die Bindungen und Bindungswinkel anschaulich darstellen. 

     Kugelstabmodell - n-Butan       Kugelstabmodell von 2-Methyl-Propan bzw. Isobutan

     

     renderbild - n-Butan als Kugelstab-Modell

     

    Kalottenmodell von 2-Methyl-Propan (= Isobutan). Bei Kalottenmodellen wird die Raumfüllung deutlich. 

    Kalottenmodell - Isobutan 

     

    Da Strukturformeln bei größeren Molekülen zu lange dauern, hilft man sich mit der Halbstrukturformel aus, wobei die Wasserstoffatome quasi als Summenformel hinter das C geschrieben wird. Man schaut zunächst, wie viele Bindungen ein C schon hat und füllt dann mit so vielen H-Atomen auf, bis die Vierbindigkeit  von Kohlenstoff erfüllt ist. Hier am Beispiel von Isobutan. 

    Halbstrukturformel von Isobutan 


    1.4.4 Verwendung

    Heizgas („blaue Gaskartuschen“), Kältemittel (Ersatz für FCKW), Treibgas in Sprays, Feuerzeuggas (häufig zusammen mit Propan)

    1.4.5 Isomerie 

    (isos (griech.) = gleich; meros (griech.) = Teil)
    Verbindungen, deren Moleküle bei gleicher Summenformel unterschiedliche Strukturformeln besitzen, bezeichnet man als Isomere. Isomere Verbindungen unterscheiden sich vor allem in ihren physikalischen Eigenschaften (Schmelz- und Siedepunkt) und wenig in ihren chemischen Reaktionen.


    1.4.6 Vollständige Verbrennung (Oxidation)

    Wenn Butan vollständig verbrannt (oxidiert) wird, so entsteht dabei ausschließlich Kohlenstoffdioxid und Wasser. 

    reaktionsgleichung-vollstaendige-verbrennung-von-butan 

  • 1.5 Homologe Reihe der Alkane

    ( homo = gleich, logos = Stoff
    Allgemeine Summenformel der homologe Reihe

    Formel zur Erstellung einer allgemeinen Summenformel


    CnH2n+2


    wichtigste Eigenschaften:

    1. brennbar (bei vollständiger Verbrennung entsteht CO2 und H2O)
    2. Dichte (g/cm³) kleiner als 1
    3. in Wasser lösen sich die Alkane nicht (evtl. in Spuren), Alkane sind untereinander in jedem Verhältnis mischbar)

     

    Die homologe Reihe

    Eine Reihe von organischen Verbindungen, deren aufeinanderfolgende Glieder sich jeweils um eine bestimmte Atomgruppe, z. B. eine CH2- Gruppe unterscheiden, nennt man homologe Reihe.

     Name

    Summen-
    formel

    Strukturformel Halbstrukturformel Aggregatzustand
     Methan CH4  06-methan  CH4  gasförmig
     Ethan C2H6  06-ethan  CH3-CH3  gasförmig
     Propan C3H8  06-propan  CH3-CH2-CH3  gasförmig
     n-Butan C4H10  06-butan  CH3-CH2-CH2-CH3  gasförmig
     n-Pentan C5H12  06-pentan  CH3-CH2-CH2-CH2-CH3  flüssig
     n-Hexan C6H14  06-hexan  CH3-(CH2)4-CH3  flüssig
     n-Heptan C7H16  06-heptan  CH3-(CH2)5-CH3  flüssig
     n-Octan C8H18  06-octan  CH3-(CH2)6-CH3  flüssig
     n-Nonan C9H20  06-nonan  CH3-(CH2)7-CH3  flüssig
     n-Decan C10H22  06-decan  CH3-(CH2)8-CH3  flüssig
     n-Undecan C11H24  06-undecan  CH3-(CH2)9-CH3  flüssig
     n-Dodecan C12H26  06-dodecan  CH3-(CH2)10-CH3  flüssig
     ....        
     n-Heptadecan  C17H36  06-heptadecan  CH3-(CH2)15-CH3  fest

     

     

    Eine Reihe von organischen Verbindungen, deren aufeinanderfolgende Glieder sich jeweils um eine bestimmte Atomgruppe, z. B. eine CH2- Gruppe unterscheiden, nennt man homologe Reihe.

  • 1.6 Nomenklatur (Benennung) der Alkane

    1.6.1 Homologe Reihe der Alkane mit Alkylrest

    Ein Alkylrest enthält jeweils ein Wasserstoff-Atom weniger als das entsprechende Alkanmolekül. Alkyle finden sich oft als "Seitengruppe" verzweigter Alkane. 

    Name   Summenformel   Name d. Alklys   Summenformel  
    Methan  CH4 Methylrest  -CH3
    Ethan  C2H6 Ethylrest  -C2H5
    Propan  C3H8 Propylrest  -C3H7
    allg. Alkane  CnH2n+2 Alkylrest  -CnH2n+1


    1.6.2 Nomenklaturregel für Alkane (Genfer Nomenklatur):

    Als Beispiel soll folgendes Molekül systematisch benannt werden:

     06-01-genfer-nomenklatur

     

    1. Alkane haben die Endung -an
       
    2. Der Name des Alkans, das die Hauptkette bildet, liefert den Stammnamen des Stoffs.
      Längste Kette der Kohlenstoffkette suchen und „Glattbügeln“.
      06-02-genfer-nomenklatur
      06-03-genfer-nomenklatur

       
    3. Beispiel.: Alle Alkane mit 5 Kohlenstoff-Atomen in der längsten Kette heißen Pentan.
       
    4. Die Namen der Seitenketten werden dem Stammnamen vorangestellt. 
      06-04-genfer-nomenklatur

      Beispiel: Methyl-Ethyl-Pentan.

       
    5. Um anzuzeigen, an welchem Kohlenstoff-Atom die Seitenkette sitzt, wird die Hauptkette nummeriert. Die Verzweigungsstellen sollen dabei möglichst kleine Zahlen erhalten. Die Zahlen werden den Namen der Seitenketten vorangestellt. 
      06-04b-genfer-nomenklatur
      Beispiel: 2,4-Methyl-3-Ethyl-Pentan.

       
    6. Treten gleiche Seitenketten mehrfach in einem Molekül auf, so wird das entsprechende Zahl-wort (Di-, Tri-, Tetra-, Penta-) als Vorsilbe verwendet.
      06-05-genfer-nomenklatur 
      Beispiel: 2,4-Dimethyl-3-Ethyl-Pentan.

       
    7. Unterschiedliche Seitenketten werden alphabetisch nach dem Namen der Alkylgruppe geordnet. 

      06-06-genfer-nomenklatur

      Beispiel: 3-Ethyl-2,4-Dimethyl-Pentan.

     

    Folgende Abbildung zeigt ein weiteres Beispiel:

     Weiteres Beispiele zur Benennung von Strukturformeln nach der Genfer Nomenklatur - 3-Ethyl-2,2-Dimethylhexan

  • 1.6.3 Isomere der Summenformel C7H16

    Entwickle zur Übung die Halbstrukturformeln der Isomeren der Summenformel C7H16 und benenne die Verbindungen mit ihrem systematischen Namen! Beachte, dass es 9 unterschiedliche Isomere gibt. Im folgenden die Lösungen (mit der Maus darüberfahren, bei der Halbstrukturformel und für den Namen der Verbindung den Text in der Tabelle markieren (hat eine hellgraue Farbe). 

     

    Halbstrukturformel

    Name der Verbindung

    07-n-heptan-blank

     

    n-Heptan

     07-2-methylhexan-blank

    2-Methylhexan

     07-3-methylhexan-blank

    3-Methylhexan

     07-2-2-dimethylpentan-blank

    2,2-Dimethylpentan

     07-2-3-dimethylpentan-blank

    2,3-Dimethylpentan

     07-2-4-dimethylpentan-blank

    2,4-Dimethylpentan

     07-3-3-dimethylpentan-blank

    3,3-Dimethylpentan

     07-2-2-3-trimethylbutan-blank

    2,2,3-Trimethylbutan

     07-3-ethyl-pentan-blank

    3-Ethylpentan

    tr

  • 1.7 Struktur und Eigenschaften der Alkane

    1.7.1 Bindungsverhältnisse

    a) Bindungsverhältnisse im Molekül lassen bestimmte chemische Verhalten voraussagen:

    • sehr starke Einfachbindung
    →   reaktionsträge
    • fast unpolare Atombindung 

    →   normalerweise keine Reaktion als Säure (auch keine Eigenprotolyse), da kein Proton abgespalten wird.

    →   bei starken Erhitzen bzw. starkem Angriff kommt es zur symmetrischen (radikalischen, homolytischen) Spaltung der Bindung.
    • keine freien Elektronenpaare
    →   kann nicht als Base reagieren (kann ja kein Proton aufnehmen)
    • keine Elektronenpaarlücke
    →   kann nicht als nucleophiles Teilchen reagieren

     

    b) Bindungen bzw. Kräfte zwischen den Molekülen (ZMKs) sind verantwortlich für die physikalische Eigenschaften (Siedetemperatur, Schmelztemperatur, Löslichkeit, etc.)

    • nur van-der-Waalskräfte
    • keine Wasserstoffbrücken
    • keine Dipol-Dipol-Wechselwirkungen 
    • Siedepunkt ist niedrig (steigt mit der Molekülgröße)
    • Schmelzpunkt ist niedrig (steigt mit der Molekülgröße)
    • Löslichkeit: schlecht mit Stoffen in denen starke Wasserstoffbrücken vorliegen
    • Löslichkeit: schlecht mit polaren Stoffen
    • Alkane lösen keine Salze, da sie keine Solvationshüllen ausbilden 

    Alkane sind typisch unpolare Stoffe (hydrophob, wassermeidend). 

  • 2 Fischer-Projektion

    Regeln und Reihenfolge:

    1. C-Gerüst senkrecht
    2. höchstes oxidiertes C-Atom oben (Oxidationszahl)
    3. beide C-C-Bindungen am mittleren C-Atom zeigen nach hinten (hinter die Papier-Ebene)
    4. beide horizontale Bindungen am mittleren, asymmetrischen C-Atom (H-C-; H-O-C-Bindung) zeigen nach vorne.
    5. Das Isomer, bei dem die Substituentengruppe mit dem elektronegativsten Atom in der Fischer-Projektion rechts steht, wird mit D[1] bezeichnet; steht der Substituent links, dann wird er mit L[2] bezeichnet.

    Beispiel
    a) Milchsäure: 2 Hydroxypropansäure
    Strukturformel in Fischerprojektion der L- und D-Milchsäure

    Im folgenden die D-Milchsäure

     

    Kalottenmodell der Milchsäure

     c) Weinsäure (2,3-Dihydroxybutan-1,4-Dicarbonsäure)

     Strukturformeln der Weinsäure (D, L und meso-Weinsäure)

     

    Hat eine Verbindung n asymmetrische C-Atome, so gibt es meist 2n Stereoisomere. Stereoisomere, die keine Enantiomere sind, heißen Diastereomere und haben verschiedene physikalische Eigenschaften. 

    Substanzen, deren Moleküle mit ihren Spiegelbildern übereinstimmen, obwohl sie Chiralitätszentranen besitzen, heißen meso-Verbindungen ("Das Spiegelbild des Originals kann durch Drehung wieder genau so aussehen, wie das Original). Sie besitzen eine Spiegelebene im Molekül. 

    ----------------- 

    [1] D = dexter (lat) = rechts
    [2] L = laevus (lat) = links

  • 2     Alkene

    2.1   Ethen

    2.1.1   Eigenschaften

    • farbloses, brennbares Gas;
    • die Flamme leuchtet stärker als bei Methan und Ethan;
    • Siedetemperatur: -104°C
    • Schmelztemperatur: - 169°C

    2.1.2   Ermittlung der Summenformel

    a) Qualitative Analyse (Verbrennungsanalyse)     

    Bei der vollständigen Verbrennung von Ethen entstehen H2O und CO2.

    b) Quantitative Analyse (Bestimmung der molaren Masse)

                Die molare Masse von Ethen: M(Ethen) = 28 g/mol

                Die Molekülmasse von Ethen: 28 u

    c) Summenformel (Molekülformel):             C2H4

     

    2.1.3   Strukturformel

    01-ta-strukturformel-ethen-ebene

    Die Doppelbindung zwischen den beiden C-Atomen wird durch zwei Elektronenpaare gebildet. Diese stoßen sich ab. Man spricht von einer „Bogenbindung“ („Bananenbindung“).
    Im Ethen Molekül betragen die Bindungswinkel 120°.
    Alle Atome liegen in einer Ebene.
    Die C=C-Doppelbindung verhindert die freie Drehbarkeit um die C-C-Achse.

    Aufgabe: Wie viel Liter Luft benötigt man bei der Verbrennung von 2 l Ethen 

    .

    2.1.4   Vorkommen, Gewinnung und Verwendung

    a) Vorkommen

    Bei Pflanzen als Hormon (Phytohormon). Steuert:

    • Fruchtreifung
    • Keimwachstum
    • Entwicklung
    • Dickenwachstum
    • Blattfall
    • Informationsweitergabe an benachbarte Pflanzen

    b) Gewinnung

    • Cracken von Erdöl

    c) Verwendung

    • Reifung von Früchten
    • Herstellung von organischen Stoffen (Kunststoffe, Tenside,...)
  • 2.1.5 Nachweis von Alkenen (Doppelbindung)

    Versuch: Ein Erlenmeyerkolben wird unter Wasser mit 250 ml Ethen gefüllt, anschließend werden 0,5 ml Brom dazugegeben und mit dem Stopfen verschlossen.

    Alternativ: Hexen + Bromwasser (VORSICHT FALLS MAN BROM NIMMT ⇨ heftige Reaktion)

    Beobachtung:
    Die Bromfarbe verschwindet; Volumenabnahme; der Erlenmeyerkolben wird warm; es entsteht ein flüssiges Produkt, die Dichte ist größer als 1 g/cm³.

    Auswertung:
    Zwei Hypothesen:

    I) Substitution:

     02 01 05 brom und ethen substitiution

    II) Addition:

     02 01 05 ta reaktionsgleichung brom und ethen


    Ergebnis

    Bei der Reaktion Ethen + Brom entsteht (fast) nur ein Reaktionsprodukt. „Bromwasserstoffnebel“ waren kaum zu sehen. Es fand somit eine Addition statt.

    Additionsreaktionen: Reaktionen bei denen sich zwei Moleküle zu einem Molekül vereinigen! Es kommt dabei zur Anlagerung von Atomen oder Atomgruppen an Doppelbindungen (Mehrfachbindun-gen).

    Reaktionsmechanismus: AE-Reaktionen (elektrophile Addition)

    = typische Reaktion von Alkenen

    02 01 05 ta elektrophie addition mechanismus mit wasser

  • 4 Kohlenhydrate - Einteilung der Kohlenhydrate

    Name: Die meisten Verbindungen dieser Stoffklasse haben die Summenformel Cx(H2O)y

    Monosaccharide, Einfachzucker
    einfache Kohlenhydrate
    Bsp.: Glucose, Fructose, Galactose 

    Oligosaccharide
    zusammengesetzte KH aus 2-8 Monosaccharide; Disaccharide umfasst die Zweifachzucker (Bsp.: Saccharose, Maltose, Lactose).

    Polysaccharide
    durch Polykondensation von MS entstanden.
    Stärke, Glycogen, Cellulose

  • 4.1 Monosaccharide

    4.1.1 Glucose - Traubenzucker

    Vorkommen: Trauben, Früchte

    a) physikalische Eigenschaften

    • Aggregatzustand: fest; Schmelzpunkt um 146°C; weiteres Erhitzen führt zur Zersetzung. 
      Folgerung: Glucose besitzt hohe zwischenmolekulare Kräfte (Vermutung: H-Brückenbindung) und van-der-Waals-Kräfte. 

     

    • Löslichkeit
      Glucose löst sich sehr gut in Wasser (67g/100ml), dagegen löst sich Glucose nicht in Benzin. Eine wässrige Glucoselösung zeigt (fast) keine elektrische Leitfähigkeit.
      Folgerung: Glucose enthält polare Gruppen, die mit Wasser H-Brücken eingehen können. Es entsteht keine Ionen.

    b) qualitative Elementaranalyse

    Reaktion von Glucose mit konzentrierter Schwefelsäure:

    Versuchsskizze Glucose mit Schwefelsäure im Reagenzglas unter Entstehung von Zuckerkohle

    Folgerung: Glucose enthält Kohlenstoff.
    Mitteilung: Glucose enthält neben C noch H und O.


    c) quantitative Elementaranalyse
    Die quantitative Elementaranalyse nach Liebig ergibt:
     3,6 g Glucose liefert bei der Verbrennung:

    • 5,28 g CO2
    • 2,16 g H2O


    Glucose besitzt folgende Summenformel: CnH2nOn
    Von dieser allgemeinen Formel [C(H2O)]n leitet sich die Bezeichnung Kohlenhydrate ab.
    Hinweis: Im Heft folgen jetzt die Arbeitsanleitung zur Strukturaufklärung (mit den diversen Experimenten). Hier folgt jedoch gleich das Ergebnis. Die Reaktionsgleichungen von Fehling und Tollens-Reagenz finden sich dann auf anderen Seiten. 

    Ergebnis:
    Glucose ist ein Polyhydroxyaldehyd, genauer Pentahydroxyhexanal, ein Aldehydzucker oder Aldose.
    Aldose = Monosaccharide, mit terminaler Carbonylgruppe (Aldehyd)
    Ketosen = Monosaccharide, mit nicht endständiger Carbonylgruppe (Keton).


    Fischerprojektion:
    Es gelten folgende Regeln:

     Glucose in der Strukturformel als Fischer-Projektion

    • Die C-C-Kette wird senkrecht geschrieben.
    • Die am höchsten oxidierte Gruppe steht oben.
    • Die C-C-Bindungen sind bei jedem C-Atom nach hinten abgewinkelt;
    • dann zeigen die waagrechten Bindungen nach vorne;
    • Bei der offenen Glucoseform gibt es vier asymmetrische C-Atome ==> 24-Isomere;
    • Die Bezeichnung erfolgt nach dem untersten C-Atom (hier C5-Atom). 
    • Da die OH-Gruppe rechts steht ==> D-Konfiguration.
    • ==> D-(+)-Glucose 

     


    (L-Glucose erhält man nur synthetisch)

    Bildung von Glucose:
    Bei Pflanzen (Fotosynthese) und Tieren (durch Abbau von anderen Molekülen).

    Fotosynthese:
    Fotosynthesegleichung: 6 CO2 + 12 H2O reagieren unter Licht zu Glucose + 6 O2 und 6 H2O

    60 Mrd t Kohlenstoff werden dabei im Jahr gebunden.

    Abbau von Glucose:
    Bei der Zellatmung (Pflanzen, Pilze, Tiere)

    Reaktionsgleichung der Zellatmung

  •  

    4.1.3 Ringstruktur der Monosaccharide 

    Widersprüche:

    • Schiffsche Reagenz (typ. Nachweis für Aldehyde) zeigt keine Farbreaktion.
    • Drehwinkel in wässriger Lsg. 52,7° statt 112,2°.
    • Tollens (1883) schloss daraus, dass Glucose nicht in der offenen Aldehydform vorliegt. 
    • Die Ursache hierfür ist in der intramolekularen Verknüpfung der Carbonylgruppe mit einer Hydroxylgruppe des gleichen Zuckermoleküls zu suchen. Es kommt also zu einer innermolekularen Halbacetalbildung.

    nucleophiler Angriff bei der Ringbildung



    Haworth-Schreibweise

    • zyklisches Glucose Molekül wird als liegendes Sechseck [Pyranosen] oder Fünfeck [Furanosen] gezeichnet;
    • Ringsauerstoffatom findet sich in der rechten hinteren Ecke [Pyranosen] bzw. im hinteren Eck [Furanosen];
    • Substituenten, die in der FISCHERprojektion nach links weisen, stehen in der HAWORTH-Projektion oben ["Kommunistenregel"]

     Ringbildung bei Glucose in der Hawoarth-Projektion

    Erklärung der negativen Reaktion der Glucose mit der Schiffschen Reagenz: Es liegt ein Gleichgewicht zwischen der offenen Kette und dem Ring vor, wobei der Anteil der offenen Kette, bei der wirklich ein Aldehyd vorliegt verschwindend gering ist (<  1%): 


    Aldehydform (offenkettig) ⇌ Halbacetalform (Ring)

    • Fuchsinschweflige Säure (Schiffsches Reagenz) bildet mit dem Aldehyd eine reversible (umkehrbare) Reaktion, daher findet kein Entzug des Aldehyds statt. Das heißt, es gibt keine GG-Verschiebung und damit keinen wirklichen Aldehydnachweis (der Anteil an offener aldehydhaltigen Glucose ist zu gering). 
    • Bei der Fehling-Probe und der Tollens-Probe (Silberspiegel) findet eine GG-Verschiebung statt! Die offene Form wird laufend entzogen, neue Ringe gehen auf und es findet langsam der Aldehydnachweis statt. 

     

     

    Durch Ringbildung entstehen 2 Strukturisomere der D-(+)-Glucose (keine Spiegelbildisomere).

     

    Mutarotation und Ringbildung von Glucose

    In wässriger Lösung liegen vor:

                      36%                                           0,26%                                                                64%

    Drehwinkel: 112,2°                                                                                                                   18,7°

       

    Es entsteht ein neues asymmetrisches C-Atom (= anomeres Kohlenstoffatom) und damit 2 Diasteromere. Anomere = Isomere, die sich nur durch die Stellung der Hydroxylgruppen am anomeren Kohlenstoffatom unterscheiden. 

    α-Form: OH-Gruppe am neuen asymmetrischen C-Atom liegt auf derselben Seite wie die am untersten asymmetrischen C-Atom. 

    Muta1rotation: Drehwinkel einer Lösung einer optisch aktiven Substanz ändert sich vom Zeitpunkt des Ansetzens der Lösung kontinuierlich bis zum Erreichen eines festen Wertes. Grund dafür ist, dass man z.B.  α-Glucose in eine wässrige Lösung gibt. Sobald sich das Molekül in Wasser löst, öffnen sich einige wenige Moleküle. Bei der erneuten Ringbildung, bildet sich auch β-Glucose. Erst wenn sich der Anteil wie oben angegeben einstellt, ändert sich der Drehwinkel nicht mehr. 

    Glucose α-Form ⇌ offene Form ⇌ β-Form

    Bei Glucose ist der Endwert: 0,36  *  112,2°    +    0,64  *  18,7°  =  52,36°



    Haworth-Schreibweise
    Achtet auf die Durchnummerierung der C-Atome. Am C1 war ursprünglich die Aldehydgruppe. 

    Glucose Rinigstrukturen in der Haworth-Schreibweise

    α-D-Glucose β-D-Glucose

    Nachweis von Glucose: GOD-Test (Glucose-Oxidase-Stäbchen); Achtung beim schriftlichen Abitur: Fehling oder Tollens ist kein Nachweis für Glucose, sondern nur für Aldehydgruppen!

    • Glucose-Oxidase = Enzym: Oxidiert Glucose am C1-Atom zu Gluconsäure und Wasserstoffperoxid (H2O2).
    • Durch das Enzym Peroxidase (z.B. aus Meerettich) wird das Wasserstoffperoxid zu Wasser reduziert. 
    • je mehr Glucose, umso intensiver die Farbe. 
      Im Handel als Teststreifen für Diabeteserkrankung.

     

    -----

    1: Lat. mutare = ändern 

  • 4.1.4 Systematik der Namensgebung einfacher Zucker

    a.) nach Anzahl der C-Atome:

    • Triosen (3 Cs)
    • Tetrosen (4 Cs)
    • Pentosen
    • Hexosen 
    • Heptosen

     
    b) nach der funktionellen Gruppe:


    Aldosen: enthalten eine Aldehydgruppe

    Lewis-Formel - Aldehyd

     

    Ketosen: enthält eine Ketogruppe

     Strukturformel eines Ketons

     

     
    c) Nach der Größe des Rings in der Ringstruktur

    Furanosen: 5er-Ring leitet sich ab von Furan

    Strukturformel von Furan

    Pyranosen: 6er-Ring leitet sich ab von Pyran 

    Strukturformel von Pyran 

  • 4.1.5 Fructose = Fruchtzucker

    Vorkommen: in Früchten, Nektar, Honig; vor allem industriell hergestellte Fructose
    Eigenschaften: kristallisiert schlecht aus wässriger Lösung → sirupartige Flüssigkeit. 

    Summenformel: C6H12O6
    Fructose ist somit ein Strukturisomer der Glucose.

    a) Seliwanow-Probe 

    Versuchsaufbau: Seliwanow im Wasserbad; Fructose wird rosa / rot; Glucose und Seliwanow bleiben farblos

    Nachweis, ob es sich bei Kohlenhydraten um Ketosen oder Aldosen handelt.
    Ketose --> roter Farbstoff
    Aldose --> keine/langsame Reaktion --> farblos


    Info: Die Seliwanow-Reaktion ist ein Nachweis für Ketohexosen in der Furanose-Ringform. Da sie im sauren Milieu abläuft, kommt es nicht zur Keto-En(di)ol-Tautomerie. Mit Glucose fällt die Probe deshalb negativ aus.

    Strukturformeln: Offenkettige und Ringbildung durch die Halbacetalbildung: 

     Strukturformeln der Fructose 

     

    Fructose bildet wie Glucose Anomere. Neben der Kettenform des Moleküls enthält das Gleichgewicht zwei anomere Pyranosen ( β-D-Fructose und α-D-Fructose; Halbacetalbildung mit dem C5-Atom) und zwei anomere Furanosen ( β-D-Fructose und α-D-Fructose; Halbacetalbildung mit dem C6-Atom).   


    Alle anomere Fructose-Moleküle in Fischer- und Haworth-Projektion





    Keto-Enol -Tautomerie

    Versuche mit Fructose: 

    • Fehling →  positiv
    • Tollens →  positiv
    • GOD (Glucose-Nachweis) + Lauge →  positiv

    Funktioniert nicht mit einer Ketogruppe, da diese nicht weiter oxidiert werden kann. Grund, warum die Nachweise trotzdem positiv verlaufen: Innermolekulare Umlagerung unter Protonenwanderung und Elektronenverschiebung. 

    Strukturformel - Reaktionsgleichung der Keto-Enol-Tautomerie in Lewis-Schreibweise 

     Genauer: 

    Mechanismus der Keto-Enol-Tautomerie in Lewis-Schreibweise

     

    Glucose und Fructose stehen im Gleichgewicht (Glucose überwiegt); bei der Oxidation von Glucose wird Glucose aus dem GG entfernt →  Fructose wird aufgebraucht.

  • zu 4.1.7 Reaktionen der Monosaccharide 

    Glycosidbildung (~Halbacetal, Vollacetal)

    a) Aldehyd + Alkohol          ⇌           Halbacetal (nucleophile Addition) 

    b) Halbacetal  + Alkohol         ⇌            (Voll)Acetal + Wasser        

    Typische Kondensationsreaktion (unter Wasserabspaltung)

     

    Beispiel:
    β-D-Glucose + Methanol ⇌ β-Methyl-Glucosid + Wasser

     

    Reaktionsgleichung mit Lewis-Formel - Reaktion von Alkohol und Glucose unter Bildung eines Glycosids



    Zucker           +                      Alkohol          ⇌                     Glycosid                           +  Wasser
    Fructose         +                      Alkohol          ⇌                    Fructosid                          + Wasser
    Glucose         +                       Alkohol          ⇌                    Glucosid                            + Wasser

    Reaktionen von Zuckern untereinander ergeben Di-, Oligo- und Polysaccharide

  • 4.2 Disaccharide

    4.2.1 Maltose (Malzzucker)

    Vorkommen: Entsteht durch unvollständige Hydrolyse von Stärke .

    Stärke  -----(Enzym: Amylase)----->   Maltose

    Verwendung: Gerstenmalz (Bier brauen)

    Eigenschaften:

    • Fehling positiv
    • zeigt Mutarotation
    • besteht aus 2 α-D-Glucoseeinheiten, α-1→4 glycosidisch verknüpft.


    Strukturformel in Haworth-Projektion - Verknüpfung

    Schema bzgl. reduzierender und nicht reduzierender Zucker



    4.2.2 Cellobiose 

    Vorkommen: Verdauungsprodukt von Pflanzenfressern aus Zellulose

    Eigenschaften:

    • Fehling positiv
    • zeigt Mutarotation
    • besteht aus 2 β-D-Glucoseeinheiten, β 1 → 4 glycosidisch verknüpft.

    Verknüpfung von beta-Glucose zu Cellobiose



    4.2.3 Lactose (Milchzucker)


    Vorkommen: Muttermilch von Säugetiere (1,5 – 8 %)

    Eigenschaften:

    • Fehling positiv
    • zeigt Mutarotation
       Hydrolyse ergibt β-D-Glucose und β-D-Galactose, β-1 → 4 glycosidisch verknüpft.

     Bildung von Lactose aus Glucose und Galactose









  • 4.2.4 Saccharose (Rohr- oder Rübenzucker)

    Vorkommen: Haushaltszucker, Kristallzucker, Zuckerrüben (18-20%), Zuckerrohr (16-22%)

    Summenformel: C12H22O11  →  Dissaccharide (2 Moleküle Monosaccharid minus 1 Molekül Wasser)

    Physikalische Eigenschaften:

    • hoher Schmelzpunkt (ca. 180°C)
    • harte Kristalle

    Folgerung:

    • Molekülgitter mit vielen H-Brückenbindungen
    • sehr leicht löslich in Wasser
    • eine Rohrzuckerlösung ist zähflüssig  → viele Wasserstoffbrücken

     

    Chemische Eigenschaften:

    • Fehling negativ
    • zeigt keine Mutarotation

    Schülerexperiment: Nach einer Hydrolyse mit verdünnter Salzsäure:

    • Fehling positiv
    • Saccharose besteht aus α-D-Glucose und β-D-Fructose
    • Beide Monosaccharide sind α-1→1-glycosidisch verknüpft   

     

    Lewisformel Saccharose aus Glucose und Fructose 

     

    Schema Saccharose - blockiertes anomeres C-Atom 

    Spaltung der Saccharose mit verdünnter Salzsäure = saure Hydrolyse

     Schulversuche zur Spaltung von Saccharose mit Seliwanoff-Probe, Fehling und GOD-Test

                      färbt sich rosa                                      roter Niederschlag                         positiv

                      enthält Fructose                                   Aldehydgruppe                             Glucose

     

     Reaktionsschema zur Spaltung von Saccharose in alpha-D-Glucose und alpha-D-Fructose

    Unter Hydrolyse versteht man einen Vorgang, bei dem Atombindungen unter Aufnahme von Wasser gespalten werden (Bsp. Esterspaltungen).

    Wichtig: die leichte Hydrolisierbarkeit spricht für eine Verknüpfung über Sauerstoff.

     

     Schemaskizze Glucose und Fructose

     

    4.2.5 Invertzucker

    Saccharose dreht die Ebene des polarisierten Lichts nach rechts. Während der Hydrolyse (durch verdünnte Salzsäure oder Ferment/Enzym Invertase) nimmt die Drehung fortwährend ab und geht in eine Linksdrehung über:

    Saccharose +      Wasser       →       D-Glucose    +        D-Fructose
     +66°         +         0°                     + 54,7                    - 92,4

    Zahlenwerte αsp in ml/(g • dm)

    Man bezeichnet daher diese Spaltung als Inversion des Rohrzuckers und das entstehende Gemisch als Invertzucker.

    Inversion: Vorzeichenwechsel der optischen Aktivität im Verlauf einer Reaktion optisch aktiver Verbindungen.

  • 5.4.3 Polysaccharide

    • Wichtigsten Beispiele: Stärke, Glykogen (tier. Stärke), Cellulose
    • Funktion: Speicher- und Gerüstsubstanz
    • Monomere der genannten Beispiele: Glucose; unterschiedl. Verknüpfung

    4.3.1 Stärke

    a) Vorkommen

    • Pflanzen (Speicherstoff, osmotisch nicht wirksam)
    • Nahrungsmittel (Brot, Teigwaren, Kartoffel, usw.), 

    b) Aufbau eines Stärkemoleküls:

    Strukturformel in Haworth-Projektion von Amylose - Staerke




    c) Bau: α-D-Glucose – Stärkekorn

      Amyolse Amylopektin
    Anteil: (10-30%)  (70-90%)
    Bau:

     linearen Ketten (helikaler

    (Schrauben-)Struktur)

    stark verzweigten Strukturen
    Verknüpfung α-1,4-glykosidisch

    α-1,4-glykosidischen
    α-1,6-glykosidischen 

    Löslichkeit in heißem Wasser kolloidal löslich  unlöslich
    Mit I2 bildet es __ Lösung blaue violette
    Im Stärkekorn Hülle Innen


    d) Nachweis: Iodstärke-Reaktion

    Versuch: Zu einer Stärkelösung gibt man ein paar Tropfen einer Lösung von Iod in Kaliumiodid (Iod-Kaliumiodid-Lösung, Lugolsche Lösung) Elementares Iod ist in Wasser kaum löslich. Liegen jedoch schon gelöste Iodid-Ionen vor, löst sich das Iod unter Bildung von Polyiodidionen:

    2 I2 + I-  →   I3-  +   I2   →  I5-

    Beobachtung: Lösung wird tiefblau
    Beim Erhitzen wird die Lösung hell, beim Abkühlen wieder tiefblau

    Erklärung: Die Stärkemoleküle sind spiralig angeordnet, in den entstehenden Hohlraum lagern sich Jodmoleküle ein die dort durch van-der-Waals-Kräfte gebunden werden. Eine blaue Iod-Stärke-Einlagerungsverbindung bildet sich. Das gelbe Licht wird absorbiert, die Lösung erscheint blau. Beim Erhitzen nimmt die Beweglichkeit der I2-Moleküle zu, so dass beim Erhitzen eine Entfärbung eintritt.

     

     

    Eigenschaften von Stärke (Amylose) 

    • in kaltem Wasser: unlöslich
    • heißem Wasser: löslich 
    • schmeckt nicht süß
    • kolloide Lösung (Kolloide: Moleküle oder Aggregate, die sich aus etw. 103 bis 109 Atomen zusammensetzt und in einem Dispersionsmittel verteilt sind).

     

    Versuch:  


    Versuchsaufbau zum Tyndall-Effekt einmal Kochsalzlösung und einmal Stärkelösung
     



    Beobachtung:
    Im Gegensatz zu NaCl-Lösung ist der Verlauf des Lichtes in der Stärkelösung sichtbar (= Tyndall-Effekt).

    Erklärung:
    Gebündeltes Licht wird beim Durchgang durch kolloid- oder molekulardisperse Systeme gestreut (d.H. jedes Teilchen streut einen Teil des auftreffenden Lichtes in alle Richtungen des Raums. Dieser von Tyndall 1868 erstmals untersuchte Effekt tritt immer dann auf, wenn Teilchen vorliegen, deren Größe etwa der Wellenlänge des Lichtes entsprechen. Solche Teilchen haben einen Durchmesser von 1 bis 1000 nm.

    van-der-Waals-Kräfte/strong

  • 2.2 Nomenklatur der Alkene

    Da die Nomenklatur der Alkene ähnlich zur Nomenklatur der Alkane ist, soll dieses Thema gleich als Übung besprochen werden. Schüler des Limes-Gymnasium Welzheims: siehe AB! 

    a) Nenne die homologe Reihe der Alkene bis Decen. 

    b) Zeichne die Strukturformeln von Propen, 1-Buten, cis-2-Buten, trans-2-Buten und 1,3-Butadien

    c) Gib die Molekülformel von Propen an. 

    d) Benenne die folgende Verbindungen. 

    I: 

    02 02 ta penta 1 3 dien

    II: 

    02 02 ta cis pent 2 en

     

     

    e) Zeichne die Strukturformeln der isomeren Pentene und benenne die Verbindungen. 

  • 2.6 Phenole = Hydroxybenzole

    Vorkommen:

    02 06 00 ta a beispiele fuer phenole

     

    2.6.1 Monohydroxybenzol = Phenol

    a) Physikalische Eigenschaften

    • Smp.: 40,9; Sdp.: 181,9 °C
    • In Wasser nur mäßig löslich (bildet bei ZT eine Emulsion)
    • Starkes Zellgift, durch Haut resorbiert

    b) Chemische Eigenschaften

    • Oxidiert an Luft leicht ⇨ rötliche Färbung
    • Karbolsäure“: 2 %ige Säure; Desinfektion
    • Im Gegensatz zu Ethanol sauer:

    1. Phenol als schwache Säure
    pKS = 9,95

    02 06 01 a ta phenol reagiert mit wasser


    Grenzformeln des Phenolations

    02 06 01 c ta grenzformeln von phenolation

     

      Phenol Ethanol
    Säurestärke höher niedriger
    Induktiver Effekt

    02 06 01 d saeurestaerke phenol

    schwacher -I-Effekt ⇨ elektronenziehend

    ⇨ H⁺-Abgabe ist erleichtert

    02 06 01 e saeurestaerke ethanol

    +I-Effekt ⇨ Elektro-nenschiebend
    H⁺-Abgabe ist er-schwert.

     Anion: Mesomeriestabilisiert  konjungierte Base (Phenolat): negative Ladung ist über den ganzen Ring delokalisiert ⇨ stabilisiert! Keine Stabilisierung durch Mesomerien 
     Brønsted-Säure stärker  schwächer 
    Brønsted-Base schwächer  stärker 

     

    2.6.3 Synthese

    90% der Weltproduktion nach der Hock-Synthese

    Wirtschaftliches Verfahren, da auch Aceton nutzbar ist.

    siehe Heftaufschrieb

    2.6.4 Verwendung

    Herstellung von Kunststoffen (Polyamide, Phenoplasten, Phenolharzen und Polycarbonaten)

  • 2.7 Anilin = Aminobenzol

    Durch Reduktion von Nitrobenzol.

    02 07 01 a herstellung von anilin

    Neuerdings: Aus Phenol durch Reaktion mit Ammoniak (Ammonolyse)

    Physikalische Eigenschaften

    • Farblose, ölige Flüssigkeit
    • Sdt: 184 °C

    Chemische Eigenschaften

    • Färbt sich an der Luft braun
    • Lösung ist schwach alkalisch

    Verwendung (BASF = Badische Anilin und Soda Fabrik)
    Wichtiger Ausgangsstoff für Synthesen von Farbstoffen (Anilinfarben), Arzneimittel (Sulfonamide und Schmerzmittel) und Kunststoffe (Polyurethane).

    Mesomere Grenzstrukturen

    02 07 01 b mesomere grenzstrukturen anilin


    Reaktion mit Wasser
    Anilin ist eine sehr schwache Base (pKB = 9,42), da sich das freie Elektronenpaar am Stickstoffatom an der Mesomerie der Doppelbindungselektronen im Ring beteiligt. 

    02 07 01 c anilin und wasser

  • 2.8 Allgemeines Zahlenbeispiel

      A + B C    +   D
    Vorher  1000          1000              0            0     
    Nachher 1000 - X     1000 - X         X
    z.B. in GG      800   800   200   200

    2.9 Säure-Basereaktionen mit Benzoesäure

    07 ab benzoesaeuregleichgewicht

     

    a) Benzoesäure + Wasser
    wenig löslich in Wasser; die Lösung reagiert sauer.

      08 ta benzoesaeure und wasser

    Es findet nur eine schwache Reaktion mit H2O statt. Es reagieren nur wenige Benzoesäuremoleküle.

    b) Benzoesäure + Natronlauge (Neutralisation)
    Es entsteht eine klare Lösung.

    08 ta benzoesaeure und natronlauge


    Die Benzoesäuremoleküle reagieren praktisch vollständig.

    c) gelöstes Natriumbenzoat + verd. Salzsäure
    Die klare Lösung wird trübe.

    08 ta natriumbenzoat und salzsaeure

     

    Feste Benzoesäure scheidet sich ab; die Benzoanionen reagieren praktisch vollständig.

  • 4.3.2 Cellulose

    Vorkommen: Cellulose ist das in der Natur am häufigsten auftretende Kohlenhydrat. Sie ist die Gerüstsubstanz in der Pflanzenwelt. 
    z.B.: Baumwolle, Flachs, Hanf (fast 100%); Stroh (30%); Holz (40-50% Cellulose).

    Eigenschaften: Cellulose ist eine weiße, in Wasser und in den meisten organischen Lösungsmitteln unlösliche Substanz. 

    Hydrolyse der Cellulose:
    a) Versuch: Filterpapierschnitzel werden mit konz. Salzsäure übergossen. Diese Mischung gibt man in 50 mL Wasser und erhitzt etwa 10 Minuten.
    Anschließend wird die Fehlingsche Probe durchgeführt.

    Beobachtung: roter Niederschlag

    b) Versuch: GOD-Test mit der hydrolisierten Cellulose.
    Beobachtung: Grünfärbung des Teststreifens.

    Folgerung: Cellulose enthält als Baustein D-Glucose.



    c) Versuch: Dünnschichtchromatographie
    Ein Chromatogramm gibt genauen Aufschluss über die Bausteine: Glucose. Bei vorsichtiger Hydrolyse ist außer β-D-Glucose auch noch Cellobiose nachweisbar (Cellobiose ist ein Disaccharid aus 2 ∙ β-D-Glucosemolekülen). 

    Aufbau eines Cellulosemoleküls  


    Lewis-Formel in der Haworth-Projektion - Cellulosemolekül



    Cellobiose

    Ausschließlich β-(1,4)-glycosidische Bindung

    Bei der Cellulose handelt es sich um fadenförmig gestreckes Makromoleküle. Diese Makromoleküle lagern sich zu Elementarfibrillen zusammen (H-Brücken). 


    4.3.3 Unterschied: Cellulose – Stärke

    a) Räumlich unterschiedliche Verknüpfung der Glucoseringe in den Makromolekülen

    Cellulose:                (-Glu-Glu-Glu-Glu- verknüpft  β 1→4)
    Stärke (z.B. Amylose) (-Glu-Glu-Glu-Glu-  verknüpft  α 1→4 )

    b) Unterschiedliche Anordnung der Makromoleküle

    Cellulose: langgestreckte, unverzweigte Kettenmoleküle
    Stärke: verzweigte Kettenmoleküle, die spiralig aufgerollt sind.

    c) Unterschiedliche Molekülmasse

    Cellulose: bis 1,8 Millionen u
    Stärke: bis 50 000 u

    4.3.4 Verwendung der Cellulose

    Nahrungsmittel: Der Mensch kann β-1,4-Bindungen der Cellulose nicht abbauen ( → Ballaststoffe). 
    Im Dickdarm schaffen das anaerobe Bakterien

    →  Umwandlung in Fettsäuren → Resorption. 
    Kühe: Pansen: Mikroorganismen →  Celluloseverdauung
    Pferde u.a. Dickdarm
    Einige Pilze und Silberfischchen (eine der wenigen Tiere mit eigenen Cellulasen). 
    Wichtigste Textilfasern: Baumwolle.
    Aus Hanf, Flachs, Jute werden Leinen, Säcke, Segeltuch, Matten usw. hergestellt.
    Papier



    4.3.4 Derivate der Cellulose


    a) Cellulose – Kunstseiden

    b) Schießbaumwolle (Christian Friedrich Schönbein, Metzinger Chemiker, geb. 1799).
    Schießbaumwolle ist Cellulosenitrat (fälschlicherweise als Nitrocellulose bezeichnet).

    Herstellung der Schießbaumwolle: 20 mL konz. H2SO4 + 10 ml rauchende HNO3 zur Kühlung kaltes Wasserbad; 2 g Watte dazugeben und mit Galsstab umrühren. Nach 10 Minuten wird die veresterte Watte nur gut mit Wasser ausgewaschen und anschließend im Exsikkator getrocknet.
    Schießbaumwolle ist Grundlage für raucharmes Schießpulver, welches das Schwarzpulver ersetzte.  z.T. mit Nitroglycerin versetzt dient die Schießbaumwolle als Sprengmittel mit einem Initialzünder.

    erbrennung
    Normale Watte, die fast ausschließlich aus Cellulose besteht, ist nur schwer brennbar. Schießbaumwolle verbrennt explosionsartig mit einer Stichflamme. Bei der Verbrennung der Schießbaumwolle werden große Mengen stabiler Gase frei, die durch ihre Ausdehnung zu einer Druckwelle führen, die typischerweise eine Explosion begleitet. Die entstandenen Gase sind Stickstoff (N2), Stickoxide (NOx) , Kohlenstoffmonoxid (CO), sowie Kohlendioxid (CO2).

    Reaktionsgleichung der Herstellung von Nitriersäure

    Summenformeln:

    2 H2SO4 + HNO3 → NO2+ + H3O1+ + HSO41- 

    Herstellung von Schießbaumwolle

     Strukturformel - Lewis-Formel - Haworth-Projektion - Schiessbaumwolle - Cellulosenitrat

  • 5 Alkanol, Alkohol

    5.1 Ethanol, Trinkalkohol, Weingeist

    5.1.1 Herstellung

    Alkoholische Gärung:
    Mikroorganismen (z.B. Hefe = Pilze) nutzen diesen Stoffwechselweg zur Energiegewinnung, wenn kein Sauerstoff vorhanden ist (= anaerobe Bedingungen). Dabei werden Kohlenhydrate (vor allem Glucose) mit Hilfe von Enzymen (Biokatalysatoren) in Kohlenstoffdioxid und Ethanol umgewandelt.

    Zucker (Glucose) --(Hefe)-->  Ethanol + Kohlenstoffdioxid ΔH < 0

    Ferner entstehen Glycerin, Methanol, „Fuselalkohole“ (= höhere Alkohole), Aldehyde, Ketone, organische Säuren und Ester.

    Bei einem Volumenanteil von etwa 14% Ethanol stellen die meisten Hefen ihre Tätigkeit ein.

    Problem: Wie kann höher konzentriertes Ethanol gewonnen werden?

    Lösung:
    Destillation: Ein Verfahren zur Trennung von Flüssigkeitsgemischen durch Verdampfen und anschließender Kondensation des Dampfes.

    Vgl. AB .

    5.1.2 Eigenschaften

    a) physikalische

    • farblose Flüssigkeit
    • Siedetemperatur: +78°C
    • Schmelztemperatur: -114°C
    • Gute Mischbarkeit mit Wasser und Benzin (SE )

    b) chemische

    • brennbar
  • 5.1.3 Formelermittlung von Ethanol

    I. Qualitative Elementaranalyse

    Versuch 1: Verbrennungsanalyse

     05 01 03 verbrennungsanalyse

    • Ethanol verbrennt zu Wasser und Kohlenstoffdioxid;
    • Nachweis von CO₂: Kalkwasser (weißer NS)
    • Nachweis von H₂O: Watesmo-Papier wird blau

    1. Ergebnis: Ethanol enthält somit zumindest C und H.


    Versuch 2: Ethanol reagiert mit Magnesium - Sauerstoffnachweis

    Versuchsaufbau: Ethanol reagiert mit Magnesium - Sauerstoffnachweis

    Durchführung: 

    1. Aufbau siehe Abbildung
    2. Zunächst wird das Magnesiumband zum Glühen gebracht
    3. Danach verdampft man den Alkohol, der über das glühende Magnesiumband streicht. 

    Beobachtung:

     Sobald Ethanol über das glühende Magnesiumband streicht glüht dieses heller auf und es bleibt ein kristalliner weißer Feststoff (Magnesiumoxid) übrig. 

    Ergebnis:

    • Ethanol reagiert mit Magnesium u.a. zu Magnesiumoxid
    • Ethanol enthält zumindest C, H und O.

    II. Molekülmassenbestimmung (Verdampfungsmethode)

    Hinweis: Dieser Versuch nur bei ausreichender Zeit durchgeführt. Nicht wundern, falls ihr das nicht im Heft stehen habt (dann kommt es auch in der Klausur nicht dran). 

    Literaturwert: M(Ethanol) = 46 g/mol.

     

    _______________

    SATP-Bedingungen (Standard Ambient Temperature and Pressure)