MENU

Säurestärke

  • 2.6 Phenole

    2.6 Phenole = Hydroxybenzole

    Vorkommen:

    02 06 00 ta a beispiele fuer phenole

     

    2.6.1 Monohydroxybenzol = Phenol

    a) Physikalische Eigenschaften

    • Smp.: 40,9; Sdp.: 181,9 °C
    • In Wasser nur mäßig löslich (bildet bei ZT eine Emulsion)
    • Starkes Zellgift, durch Haut resorbiert

    b) Chemische Eigenschaften

    • Oxidiert an Luft leicht ⇨ rötliche Färbung
    • Karbolsäure“: 2 %ige Säure; Desinfektion
    • Im Gegensatz zu Ethanol sauer:

    1. Phenol als schwache Säure
    pKS = 9,95

    02 06 01 a ta phenol reagiert mit wasser


    Grenzformeln des Phenolations

    02 06 01 c ta grenzformeln von phenolation

     

      Phenol Ethanol
    Säurestärke höher niedriger
    Induktiver Effekt

    02 06 01 d saeurestaerke phenol

    schwacher -I-Effekt ⇨ elektronenziehend

    ⇨ H⁺-Abgabe ist erleichtert

    02 06 01 e saeurestaerke ethanol

    +I-Effekt ⇨ Elektro-nenschiebend
    H⁺-Abgabe ist er-schwert.

     Anion: Mesomeriestabilisiert  konjungierte Base (Phenolat): negative Ladung ist über den ganzen Ring delokalisiert ⇨ stabilisiert! Keine Stabilisierung durch Mesomerien 
     Brønsted-Säure stärker  schwächer 
    Brønsted-Base schwächer  stärker 

     

    2.6.3 Synthese

    90% der Weltproduktion nach der Hock-Synthese

    Wirtschaftliches Verfahren, da auch Aceton nutzbar ist.

    siehe Heftaufschrieb

    2.6.4 Verwendung

    Herstellung von Kunststoffen (Polyamide, Phenoplasten, Phenolharzen und Polycarbonaten)

  • 6 Chlorwasserstoff-Gas und Wasser

    6 Chlorwasserstoff-Gas und Wasser (Springbrunnen)

    Chlorwasserstoff: Summenformel HCl, polare Atombindung, Gas, stechender Geruch 

    Chlorwasserstoff: Lewis-Formel der polaren Bindung

    Wasser: Summenformel H₂O, polare Atombindung, Flüssigkeit, geruchslos

    Wasser: Lewis-Formel mit polaren Bindung

    a) Versuch:

    Springbrunnenversuch: Chlorwasserstoff-Gas und Wasser

    b) Beobachtung:
    Das Wasser „schießt“ bergauf in den Rundkolben. Die Indikatorfarbe schlägt nach rot/gelb um. Die rote wässrige Lösung ist geruchlos.

    c) Reaktionsgleichung – Struktur/Lewisformel:

    Theoretisch gibt es zwei Möglichkeiten, wie Wasser und Chlorwasserstoff reagieren können.

    1. Formuliere einmal diese zwei Möglichkeiten als Reaktionsgleichung mit Strukturformeln. 
    2. Entscheide, welche dieser beiden möglichen Reaktionen tatsächlich abläuft. Falls du nicht drauf kommst, gehe zurück zum Thema: Säure-Stärke 

    Nachweis der gebildeten Ionen:

    • Leitfähigkeitsmessung
    • durch Elektrolyse: An der Anode (+-Pol) entsteht dabei Cl₂-Gas. Somit müssen in der verdünnten Salzsäure Chlorid-Ionen (Cl⁻-Ionen) vorliegen.

    Aufbau: Elektrolyse von Salzsäure

    • durch Indikator: Die Gelbfärbung bei Bromthymolblau zeigt Oxonium-Ionen (H₃O⁺) an. 

    Reaktionsgleichung Zusammenfassung

    Verdünnte Salzsäure enthält hydratisierte Oxonium- und Chlorid-Ionen und Wassermoleküle.


    d) Protolyseschema

    Formuliere für diese Reaktion einmal das Protolyseschema: 

    e) Erklärung:
    Chlorwasserstoff-Gas reagiert mit Wasser. Im Zylinder entsteht ein Unterdruck. Die Oxonium-Ionen färben den Universalindikator/Bromthymolblau rot/gelb.

     Salzsäure: = wässrige Lösung des Gases Chlorwasserstoff

     

    Wenn man sehr viel HCl-Gas in Wasser einleitet, reagieren nicht mehr alle HCl-Moleküle mit den H₂O-Molekülen. Diese HCl-Moleküle liegen „gelöst“ vor. Es ist so „rauchende“ bzw. konzentrierte Salzsäure entstanden.

      Leitfähigkeit Geruch Indikatorpapier Teilchen
    verdünnte Salzsäure + - rot H₂O, H₃O⁺, Cl⁻
    rauchende Salzsäure + + rot H₂O, H₃O⁺, Cl⁻, HCl