W. Hölzel
  • Chemie
      • Back
      • Themen
      • 08. Klasse
          • Back
          • 1 Stoffe und ihre Eigenschaften
              • Back
              • 01 Eigenschaften, Dichte und Dichtebestimmung
              • 02 Atommodell nach Dalton - Kugelteilchenmodell
              • 03 Aggregatzustände und Kugelteilchenmodell
              • 04 Brownsche Molekularbewegung, Diffusion und Lösungen
              • 05 Stoffklassen, Reinstoffe, Gemische
          • 2. Die chemische Reaktion
              • Back
              • 01 Eisen reagiert mit Schwefel
              • 02 Chemische Reaktion und Energie
              • 03 Weitere Metalle + Schwefel
              • 04 Rückgewinnung von Metallen
              • 05 Aktivierungsenergie
          • 3. Elemente und Verbindungen
              • Back
              • 01 Element, Verbindung, Synthese und Analyse
          • 4. Quantitative Beziehungen
              • Back
              • 01 Quantitative Gesetze
              • 02 Atommasse
              • 03 Avogadro-Konstante, Stoffmenge und Teilchenanzahl
              • 04 Molare Masse
              • 05 Verhältnisformel
              • 06 Moleküle
              • 07 Bedeutung von chemischen Formeln
              • 08 Übungsaufgaben
          • 5. Der Atombau und weitere Kap.
              • Back
              • 01 Einleitung
              • 02 Elementarteilchen - Protonen, Neutronen, Elektronen
              • 03 Atomkern und Atomhülle und Nils Bohr
              • 04 Kugelwolkenmodell (KWM) und Pauli-Prinzip
              • 05 Periodensystem der Elemente (PSE)
              • 06 Edelgasregel - Oktettregel
              • 07 Atombindung
              • 08 Ionenbindung
      • 09. Klasse
          • Back
          • 1. Vom Atombau bis ZMKs
              • Back
              • 1 Das Periodensystem der Elemente (Teil I)
              • 2 Atommodelle - Wiederholung Demokrit und Dalton
              • 2.3 Rutherford: Kern-Hülle-Modell
              • 2.4 Bohr – Schalenmodell der Elektronenhülle
              • 2.5 Das Kugelwolkenmodell, KWM
              • 2.6 Das Periodensystem der Elemente (PSE) und die Atommodelle
              • 2.7 Lewis – Formeln für Moleküle
              • 3 Edelgasregel (Oktettregel)
              • 4 Atombindung = Elektronenpaarbindung
              • 4.1 Die HNO-Regel (HNO7-Regel)
              • 4.1.1 Die Elektronenpaar-Bindung und die HNO-Regel
              • 4.2 Summenformel
              • 4.3 Reaktionsgleichungen in Lewis-Schreibweise und Summenformeln
              • 4.4 Der räumliche Bau von Molekülen
              • 4.2 Atomradien
              • 4.3 Elektronegativität
              • 4.4 Polare und unpolare Atombindung
              • 4.5 Elektrische Dipole
              • 5 Ionenbindung
              • 5.0.1 Elektroneutralität 
          • 2. Redoxreaktionen
              • Back
              • 1. Magnesium und Sauerstoff
              • 1.2 Natrium + Chlor
              • 1.3 Neue Definitionen
              • 1.4 Aluminium reagiert mit Brom
              • 1.5 Ionenladungen und Formeln von Ionenverbindungen
              • 2 Bildung von Ionenverbindungen mit Nebengruppenelementen
              • 3 Redoxreaktionen mit Molekülen - Oxidationszahlen
          • 3. Säure-Base-Reaktionen
              • Back
              • Säure-Base-Reaktionen (Protolyse-Reaktionen)
              • 2 Reaktion von Chlorwasserstoff-Gas mit Ammoniak-Gas
              • 3 Reaktion von festem Ammoniumchlorid und festem Natriumhydroxid
              • 4 Allgemeine Säure-Base-Definition nach Brønsted (1923)
              • 5 Stärke von Säuren und Basen
              • 6 Chlorwasserstoff-Gas und Wasser
              • 7 Konzentration
              • 8 Neutralisation
              • 9 Bildung von Calciumhydroxid
      • 10. Klasse
          • Back
          • 1. Alkane
              • Back
              • 1.1 Methan
              • 1.4 Butan
              • 1.5 Homologe Reihe der Alkane
              • 1.6 Genfer Nomenklatur der Alkane
              • 1.6 Übungen zur Nomenklatur
              • 1.7 Eigenschaften der Alkane
              • 1.8 Angriffsfreudige Teilchen
              • 1.9 Radikalische Subsitution - Bildung von Halogenalkane
          • 2. Alkene
              • Back
              • 2.1 Ethen
              • 2.1.5 Nachweis von Alkenen (Mehrfachbindungen)
              • 2.1.6 Isomerien von Alkenen
              • 2.2 Nomenklatur der Alkene
              • 2.3 Katalytische Hydrierung
              • 2.4 Vergleich: Ethen – Ethan
          • 3. Alkine
              • Back
              • 3.1 Ethin (Acetylen)
              • 3.1.3 Herstellung
              • 3.2 Reaktionstyp bei Alkinen
          • 5 Alkohole - Alkanole
              • Back
              • 5.1 Ethanol
              • 5.1.3 Formelermittlung von Ethanol
              • 5.1.3 Formelermittlung von Ethanol - Teil II
              • 5.1.4 Versuch Ethanol reagiert mit Alkalimetall
              • 5.1.5 Induktiver Effekt
              • 5.2 Homologe Reihe der Alkohole, Alkanole
              • 5.2.4 Primäre, sekundäre und tertiäre Alkohole
              • 5.2.6 Mehrwertige Alkohole
              • 5.3 Chemische Reaktionen von Alkohol
          • 6 Carbonylverbindungen
              • Back
              • 6.1.1 Herstellung von Alkanale
              • 6.1.2 Funktionelle Gruppe der Alkanale (Aldehyde)
              • 6.1.4 Aldehydnachweise
              • 6.2 Alkanone (Ketone)
              • 6.3 Unterscheidung: Aldehyde – Ketone
          • 7 Carbonsäuren
              • Back
              • 7.1 Essigsäure – Ethansäure
              • 7.2 Funktionelle Gruppe der Monocarbonsäuren
              • 7.3 Vergleich der Siedepunkte - ZMK
              • 7.4.1 Säure-Base-Reaktionen
              • 7.4.2 Redox-Reaktion von Essigsäure mit Magnesium
      • 1. und 2. Jahrgangsstufe
          • Back
          • Elektrochemie II - Anwendungen
              • Back
              • 4 Anwendungen - 4.1 Volta-Element
              • 4.2 Bleiakkumulator
              • 4.3 Brennstoffzelle
              • 4.4 Weitere Batterien
              • 4.4.2 Alkali – Mangan-Batterie
              • 4.5 Akkumulatoren
              • 4.6 Herstellung von Stoffen mit Hilfe von erzwungene Redoxreaktionen
              • 4.6.2 Die elektrolytische Raffination von Kupfer
              • 4.7 Korrosion
              •  4.7.3 Beispiele für Elektrochemische Korrosionen
              • 4.7.4 Einfluss von Kohlenstoffdioxid auf die Korrosion
              • 4.7.5 Sauerstoff-Korrosion – Rosten von Eisen
              • 4.7.6 Korrosionsschutz
          • Energetik - Thermodynamik
              • Back
              • 1 Systeme
              • 2 Energieerhaltungssatz
              • 3 Innere Energie – U
              • 4 Volumenarbeit - W
              • 5 Reaktionswärme – Q
              • 6 Wärmekapazität
              • 7 Kalorimetrie
              • 7.2 Bestimmung der Neutralisationsenthalpie
              • 8 Enthalpie - H
              • 8.2 Endotherme Reaktionen
              • 8.3 Molare Standard-Bildungsenthalpie
              • 8.6 Satz von Hess
              • 8.6 Satz von Hess - Teil II
              • 9 Bindungsenthalpien
              • 9.2 Gitterenergien – Born-Haber-Kreispozess
              • 10 Heizwert und Brennwert
              • 11 Entropie – S
              • 11.2 Die molare Standard-Entropie
              • 12 Gibbs Energie – G
              • 12.1 Gibbs-Helmholtz: Beispiele
              • 13 Metastabile Zustände
              • 14 Zusammenfassung
          • Cycloalkane und Aromaten
              • Back
              • 1 Cycloalkane
              • 2 Aromaten
              • 2.2 Hückel-Regel
              • 2.3 Nomenklatur
              • 2.4 Heteroaromaten
              • 2.5.4 Friedel-Crafts-Alkylierung
              • 2.6 Phenole
              • 2.7 Anilin
              • 2.5 Benzolderivate durch elektrophile Substitution
          • Gleichgewichtsreaktionen
              • Back
              • 01 Umkehrbare Reaktionen
              • 01.2 Beispiel Calciumhydroxid
              • 2 Gleichgewichtsreaktionen
              • 2.3 Modellexperiment - Stechheberversuch
              • 2.4 Merkmale eines chemischen Gleichgewichts
              • 2.5 Estergleichgewicht
              • 2.6 und 2.7 Schreibweise und Kollisionsmodell
              • 2.9 Benzoesäure-Gleichgewicht
              • 2.10 Verschiebung des Gleichgewichts
              • 2.11 Prinzip von Le Chatelier
              • 2.12 Massenwirkungsgesetz (MWG)
              • 2.13.2 Ermittlung der GG-Konstante Kc
              • 2.14 Berechnungen zum Massenwirkungsgesetz
              • 2.15 Die Ammoniaksynthese
          • Säure-Base-Reaktionen
              • Back
              • 1. Autoprotolyse des Wassers
              • 2. Der pH-Wert
              • 3 Protolyse-Reaktionen
              • 3.2 Ammoniak-Gas + Wasser
              • 3.3 Neutralisation
              • 3.4 Mehrprotonige Säuren
              • 3.5 Stärke von Säuren und Basen
              • 4 Stärke von Säuren und Basen
              • 4.2 Basestärke: der pKB-Wert
              • 4.4 pH-Wert unterschiedlich starke Säuren
              • 4.5 Säure-Base-Reaktionen in Salzlösungen
              • 4.6 Zusammenfassung
              • 5 Indikatoren
              • 6 Säure-Base-Titration
              • 7 Pufferlösung
          • Naturstoffe
              • Back
              • 01 Isomerie
              • 02 Fischer-Projektion
              • 03 Optische Aktivität, Polarimeter und Racemat
              • 04 Kohlenhydrate eine Übersicht
              • 04.1 Monosaccharide - Glucose
              • 04.1 Halbacetalbildung
              • 04.1 Ringstruktur der Monosaccharide
              • 04.1 Systematik der Namensgebung
              • 04.1 Fructose und Keto-Enol-Tautomerie
              • 04.1 Reaktionen der Monosaccharide
              • 04.1 Glycosidbindung - Vollacetal
              • 04.2 Disaccharide
              • 04.2 Saccharose
              • 04.3 Polysaccharide - Amylose
              • 04.3 Cellulose
          • Naturstoffe II
              • Back
              • 5 Proteine
              • 5.1.6 Aminosäure sind Ampholyte
              • 5.1.7 Isoelektrischer Punkt
              • 5.1.9 Nachweisreaktionen
              • 5.2 Peptide
              • 5.2.4 Einteilung der Peptide
              • 5.3 Eiweiße
              • 5.3.4 Primärstruktur
              • 5.3.11 Enzyme
              • 6 Nucleinsäure
              • 7 Lipide
          • Elektrochemie - Übersicht
              • Back
              • 1 Freiwillig ablaufende Reaktionen
              • 1 Freiwillig ablaufende Reaktionen Teil b
              • 1.2 Erstellung einer Redoxreihe
              • 1.2 Wiederholung Oxidationszahlen
              • 1.3 Stellung von H2/2 H+
              • 1.4 Weitere Redoxreaktionen
              • 2 Elektrochemische Zellen
              • 2 Metallische Bindung
              • 2.2 Standardelektrodenpotential und NHE
              • 2.3.1 Standardelektronenpotential von Kupfer
              • 2.4 Die elektromotorische Kraft (EMK)
              • 2.5 Elektrochemische Spannungsreihe der Metalle
              • 2.5.1 Standardelektrodenpotential der Chlorknallgaszelle
              • 2.5.2 Anwendung der Spannungsreihe
              • 2.5.3 Zusammenfassung wichtiger Begriffe
              • 2.6 Konzentrationszelle
              • 2.7 Nernst-Gleichung
              • 3 Elektrolyse
              • 3.3 Zersetzungsspannung
  • PSE
  • Biologie
      • Back
      • Themen
      • 7. Klasse
          • Back
          • 1 Zelluläre Organisation von Lebewesen
              • Back
              • 1.1 Mikroskopieren und Protokollieren
              • 1.2 Aufbau von Zellen
      • 9. Klasse
          • Back
          • Genetik
              • Back
              • 1 Erbinformation
              • 2 Chromosom
              • 3 Formen des Wachstums
              • 3.1.1 Mitose
              • 3.1.2 Die Meiose
              • 3.1.3 Rekombination (Neukombination)
              • 4 Klassische Genetik - Vokabeln
              • 4.1 Dominant-rezessiver-Erbgang
              • 4.1.2 Rückkreuzung
              • 4.1.3 Dihybrider Erbgang
              • 4.2 Intermediärer Erbgang
              • 5 Humangenetik – Stammbaumanalyse
              • 6 Molekulargenetik - Aufbau der DNA
              • 6.2 Vom Gen zum Merkmal
      • 1. und 2. Jahrgangsstufe
          • Back
          • Exkurs: Fotosynthese
  • NWT
  • Software & Tutorials
      • Back
      • Chemsketch-Tutorial
      • OpenOffice - Writer - Tutorial
      • HTML5-Spielwiese
      • HTML5-Spielwiese Teil 2
  • Fotos
  • Suche
  1. Aktuelle Seite:  
  2. Home
  3. Chemie
  4. 10. Klasse
  5. Chemie
  6. Chemie extern
  7. Chemie Themen
  8. 9. Klasse
  9. 09 02 Redoxreaktionen

Redoxreaktionen

1. Bildung von Ionenverbindungen bei Hauptgruppenelementen

1.1 Magnesium + Sauerstoff

Experiment: Magnesiumband wird an der Luft entzündet. Es brennt mit sehr heller Flamme. 

a) Vereinfacht: Alle Elemente als Atome geschrieben.

Reaktionsgleichung in Lewisschreibweise Magnesium und Sauerstoff reagiert zu Magnesiumoxid


b) keine Vereinfachung: Sauerstoff wird als Molekül geschrieben:

     Reaktionsgleichung: 2 Mg + O2 → 2 MgO ΔH < 0

c) Redoxschema:

 

I. Allgemein:

Redoxschema in allgemeiner Form als Skizze 

Hier erst mal das Redoxschema einer freiwillig ablaufenden Reaktion (Bergabreaktion). Mit Hilfe eines Redoxschemas kann man eine Reaktion veranschaulichen. Auf dem diagonalen Pfeil schreibt man die Anzahl der Elektronen, die von einem Stoff (bzw. Teilchen) zu einem anderen Teilchen übergehen. Oben links steht das Teilchen, welches die Elektronen abgibt. Wenn dieses Teilchen diese Elektronen abgibt verändert es sich selbst (Natrium ist zum Beispiel ein sehr reaktives Metall; Natrium-Kation hingegeben ist reaktionsarm und wir nutzen es als Bestandteil des Speisesalzs). Das oxidierte Teilchen wird oben rechts geschrieben. 

Unten rechts steht das Teilchen, welches Elektronen aufnimmt. Auch dieses Teilchen verändert sich dabei. Das Ergebnis steht dann unten links.  


II.  Mg + O2

01 redoxschema-mg-und-o2

 

d) Teilgleichungen

Gerade bei komplizierten Redoxgleichungen, kann es eine Hilfe sein, dass man die Reaktionsgleichungen in die Teilreaktionen Oxidation und Reduktion aufsplittet. Das Ergebnis für die Verbrennung von Magnesium sind man in den folgenden Teilgleichungen. Da die Anzahl der aufgenommenen und abgegebenen Elektronen gleich sein muss, multipliziert man die Oxidationsreaktion mit zwei. Dadurch geben zwei Magnesium-Atome vier Elektronen ab (siehe Redox) und das Sauerstoffmolekül nimmt vier Elektronen auf.   


Oxidation: Mg             → Mg2+ + 2 e-    | · 2
Reduktion: O2 + 4 e-  → 2 O2-              | · 1

--------------------------------------------------- 

Redox:  2 Mg + O2 → 2 Mg2+ + 2 O2-

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 13. April 2021
  • Redoxreaktionen
  • Ionenverbindung
  • Oxidationsmittel
  • Reduktionsmittel

1.2 Natrium reagiert mit Chlor

 Wichtiger Tipp: Durch Elektronenabgabe oder Aufnahme können Ionen entstehen, die Edelgaskonfiguration in der Elektronenhülle aufweisen.

  1. Formuliert die Teilreaktionen (Oxidation und Reduktion).
  2. Formuliert die Gesamtreaktion.
  3. Zeichnet ein vollständiges Redoxschema für diese Reaktion.

{slider title="Lösung" open="false" class="icon"}

Oxidation: Na → Na¹⁺ + 1 e⁻                  | · 2
Reduktion: Cl₂ + 2 e⁻ → 2 Cl¹⁻               | · 1
-------------------------------------------
Redox: 2 Na + Cl₂ → 2 Na¹⁺ + 2 Cl¹⁻

01-02-00-reaktionsgleichung-natrium-chlor

Reaktionsgleichung:      2 Na + Cl₂ → 2 NaCl ΔH < 0

01-02-00-redoxschema---natrium-chlor

 

{/sliders}

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 28. Januar 2021
  • Redoxreaktionen
  • Ionenverbindung
  • Oxidationsmittel
  • Reduktionsmittel

1.3 Neue Definitionen

Oxidation = Elektronenabgabe
Reduktion = Elektronenaufnahme

Redoxreaktionen: Reaktionen mit Elektronenübertragung.
Oxidation und Reduktion laufen gleichzeitig ab.

Oxidationsmittel: Elektronenakzeptor („Elektronenräuber“)
Reduktionsmittel: Elektronendonator („ Elektronenspender“) [ nicht freiwillig ]

Merke: Ein Oxidationsmittel oxidiert ein anderes Teilchen und wird dabei selber reduziert.

Ein Reduktionsmittel gibt Elektronen ab, die es später wieder aufnehmen kann. Es wird also zu einem Oxidationsmittel.

Redoxpaar: z.B.

 1-03-00-ta-neue-definitionen---magnesium

 

01-02-00-allgemeine-form---redoxpaare


Jede Redoxreaktion man formal in zwei Teilreaktionen zerlegen:
(1) Oxidation (Elektronenabgabe)
(2) Reduktion (Elektronenaufnahme).

 Beispiel: Lithium reagiert mit Chlor

(1) Oxidation:           Li → Li⁺ + 1 e⁻                                    | · 2
(2) Reduktion:          Cl₂ + 2 e⁻ → 2 Cl⁻                               | · 1
______________________________________________________
Teilchengleichung:   2 Li + Cl₂ → 2 Li⁺ + 2 Cl⁻
Reaktionsgleichung: 2 Li(s) + Cl₂ (g) → 2 LiCl(s)        ΔH < 0

 

Achtung:
Die Zahl der abgegebenen und aufgenommenen Elektronen muss gleich sein; die Elektronenbilanz muss stimmen (gemeinsames Vielfaches!).

Aus diesem Grund muss man das Teilschema (1) mit dem Faktor 2 multiplizieren

Die Formel für das Salz LiCl besagt, dass im festen LiCl, die Lithium-Ionen und die Chlorid-Ionen im Stoffmengenverhältnis
n(Li⁺) : n(Cl-) = 1 : 1 vorhanden sind.

Aufgaben:

Formuliere für folgende Reaktionen

  • die Teilreaktionen.
  • Stelle abschließend jeweils die Teilchengleichung und die
  • Reaktionsgleichung auf.
  • Achte darauf, welche Elemente molekular vorkommen und formuliere die Molekülformel auch in den Teilreaktionen.

a) Magnesium + Chlor
b) Aluminium + Sauerstoff

a) Magnesium + Chlor

{slider title="Lösung" open="false" class="icon"}

(1) Oxidation: Mg → Mg²⁺ + 2 e⁻                   | · 1
(2) Reduktion: Cl₂ + 2 e⁻ → 2 Cl⁻                  | · 1
-----------------------------------------------------------------------------------------
Teilchengleichung: Mg + Cl₂ → Mg²⁺ + 2 Cl⁻

Reaktionsgleichung: Mg + Cl₂ → MgCl₂

Die Formel für das Salz MgCl₂ besagt, dass im festen Magnesiumchlorid, die Magnesium-Ionen und die Chlorid-Ionen im Stoffmengenverhältnis n(Mg²⁺) : n(Cl-) = 1 : 2 vorhanden sind.

{/sliders}

b) Aluminium + Sauerstoff

{slider title="Lösung" open="false" class="icon"}

(1) Oxidation: Al → Al³⁺ + 3 e⁻     | · 4
(2) Reduktion: O₂ + 4 e⁻ → 2O²⁻   | · 3
---------------------------------------------------------------------------------
Teilchengleichung: 4 Al + 3 O₂ → 4 Al³⁺ + 6 O²⁻

Reaktionsgleichung: 4 Al + 3 O₂ → 2 Al₂O₃

Das Ionengitter des Aluminiumoxids ist elektrisch neutral, wenn auf zwei Aluminium-Ionen (Al³⁺) drei Oxid-Ionen (O²⁻) entfallen. Das Anzahlverhältnis muss 2 : 3 lauten: (Al³⁺)₂(O²⁻)₃ oder Al₂O₃ (Verhältnisformel).

{/sliders}

Verhältnisformeln der Salze geben das Zahlenverhältnis der Ionen im Ionengitter an!

 

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 28. Januar 2021
  • Redoxreaktionen
  • Ionenverbindung
  • Oxidationsmittel
  • Reduktionsmittel

1.4 Aluminium + Brom

Aufbau:

 

  1. Formuliert die Teilreaktionen (Oxidation und Reduktion).
  2. Formuliert die Gesamtreaktion.
  3. Zeichnet ein vollständiges Redoxschema für diese Reaktion.

{slider title="Lösung" open="false" class="icon"}

01 04 00 b ta teilreaktionen al und br2

 

Die Zahl der abgegebenen und aufgenommenen Elektronen muss gleich sein; die Teilchengleichung (2) muss deshalb mit dem Faktor 3 multipliziert werden.

Für die Teilchengleichung benötigt man ganze Zahlen (1,5 Brom-Moleküle gibt es nicht!). Deshalb wird die Gleichung (3) mit dem Faktor 2 multipliziert.

Teilchengleichung: 2 Al + 3 Br₂ → 2 Al³⁺ + 6 Br⁻
Reaktionsgleichung: 2 Al + 3 Br₂ → 2 AlBr₃                 ΔH < 0


Redoxschema:

 

{/sliders}

Übungen:
Formuliere für folgende Reaktionen die Teilreaktionen. Stelle abschließend jeweils die Teilchengleichung und die Reaktionsgleichung auf. Achte darauf, welche Elemente molekular vorkommen und formuliere die Molekülformel auch in den Teilreaktionen.

  1. Magnesium + Chlor
  2. Aluminium + Sauerstoff

 

Lösungen: Um die Lösung zu sehen, muss der Bereich darunter "markiert" werden (z.B. durch Links-Klick und ziehen über den unteren Bereich mit der Maus). 

 

a. Magnesium + Chlor

(1) Oxidation: Mg → Mg²⁺ + 2 e⁻ | · 1
(2) Reduktion: Cl₂ + 2 e⁻ → 2 Cl⁻ | · 1
-----------------------------------------------------------------------------------------
Teilchengleichung: Mg + Cl₂ → Mg²⁺ + 2 Cl⁻

Reaktionsgleichung: Mg + Cl₂ → MgCl₂

Die Formel für das Salz MgCl₂ besagt, dass im festen Magnesiumchlorid, die Magnesium-Ionen und die Chlorid-Ionen im Stoffmengenverhältnis n(Mg²⁺) : n(Cl-) = 1 : 2 vorhanden sind.

b. Aluminium + Sauerstoff

(1) Oxidation: Al → Al³⁺ + 3 e⁻ | · 4
(2) Reduktion: O₂ + 4 e⁻ → 4 O²⁻ | · 3
---------------------------------------------------------------------------------
Teilchengleichung: 4 Al + 3 O₂ → 4 Al³⁺ + 6 O²⁻

Reaktionsgleichung: 4 Al + 3 O₂ → 2 Al₂O₃

Das Ionengitter des Aluminiumoxids ist elektrisch neutral, wenn auf zwei Aluminium-Ionen (Al³⁺) drei Oxid-Ionen (O²⁻) entfallen. Das Anzahlverhältnis muss 2 : 3 lauten: (Al³⁺)₂(O²⁻)₃ oder Al₂O₃ (Verhältnisformel).

Wichtig: Verhältnisformeln der Salze geben das Zahlenverhältnis der Ionen im Ionengitter an.

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 28. Januar 2021
  • Redoxreaktionen
  • Ionenverbindung
  • Oxidationsmittel
  • Reduktionsmittel

1.5 Ionenladungen und Formeln von Ionenverbindungen (Salzen)

Anzahl der positiven Elementarladungen muss mit der Anzahl der negativen Elementarladungen im Ionengitter übereinstimmen. Formeln für Salze geben an, in welchem Anzahlverhältnis die beteiligten Ionen im Ionengitter vorliegen. Es handelt sich um Verhältnisformeln. 

Bsp.:

  • Natriumchlorid besteht aus Na¹⁺- und Cl¹⁻-Ionen: Verhältnisformel: NaCl
  • Magnesiumbromid besteht aus Mg²⁺- und Br¹⁻-Ionen: Verhältnisformel: MgBr₂
  • Aluminiumoxid besteht aus Al³⁺- und O²⁻-Ionen: Verhältnisformel: Al₂O₃
  • Natriumsulfid besteht aus Na¹⁺- und S²⁻-Ionen: Verhältnisformel: Na₂S
  • Calciumnitrid besteht aus Ca²⁺- und N³⁻-Ionen: Verhältnisformel: Ca₃N₂

 

1. Hinweis: Wenn keine Zahl da steht (wie z.B. beim Kochsalz NaCl, muss man sich eine "1" denken: Na₁Cl₁).

2. Hinweis: Man bekommt die gemeinsame Ladung recht schnell heraus: Ca²⁺- und N³⁻-Ionen -> Ca₃N₂ -> Die Ladungsanzahl einfach beim anders geladenen Partner in den Index schreiben. 

 

Falls man das nochmals etwas genauer wiederholen möchte: Hier die Grundlagen dazu: Ionenbindung - PSE - Verhältnisformel.

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 30. Juli 2016
  • Redoxreaktionen
  • Ionenverbindung
  • Verhältnisformel
  1. 2 Bildung von Ionenverbindungen mit Nebengruppenelementen
  2. 3 Redoxreaktionen mit Molekülen - Oxidationszahlen
Schreibweise Mesomerie Meiose Kohlenhydrate Doppelbindung Halbacetal Induktiver Effekt Reduktionsmittel Elektronen Schmelztemperatur Ammoniumchlorid Elektrochemie/Akkumulator Summenformel Löslichkeit Oktett-Regel Nitrierung Atombindung PSE Verhältnisformel Übungen
  • Home
  • Kontakt
  • Impressum - Disclaimer
  • Datenschutzbestimmungen
  • Sitemap
© 2025 W. Hölzel - Biologie und Chemie
To Top
{cookiesinfo}