W. Hölzel
  • Chemie
      • Back
      • Themen
      • 08. Klasse
          • Back
          • 1 Stoffe und ihre Eigenschaften
              • Back
              • 01 Eigenschaften, Dichte und Dichtebestimmung
              • 02 Atommodell nach Dalton - Kugelteilchenmodell
              • 03 Aggregatzustände und Kugelteilchenmodell
              • 04 Brownsche Molekularbewegung, Diffusion und Lösungen
              • 05 Stoffklassen, Reinstoffe, Gemische
          • 2. Die chemische Reaktion
              • Back
              • 01 Eisen reagiert mit Schwefel
              • 02 Chemische Reaktion und Energie
              • 03 Weitere Metalle + Schwefel
              • 04 Rückgewinnung von Metallen
              • 05 Aktivierungsenergie
          • 3. Elemente und Verbindungen
              • Back
              • 01 Element, Verbindung, Synthese und Analyse
          • 4. Quantitative Beziehungen
              • Back
              • 01 Quantitative Gesetze
              • 02 Atommasse
              • 03 Avogadro-Konstante, Stoffmenge und Teilchenanzahl
              • 04 Molare Masse
              • 05 Verhältnisformel
              • 06 Moleküle
              • 07 Bedeutung von chemischen Formeln
              • 08 Übungsaufgaben
          • 5. Der Atombau und weitere Kap.
              • Back
              • 01 Einleitung
              • 02 Elementarteilchen - Protonen, Neutronen, Elektronen
              • 03 Atomkern und Atomhülle und Nils Bohr
              • 04 Kugelwolkenmodell (KWM) und Pauli-Prinzip
              • 05 Periodensystem der Elemente (PSE)
              • 06 Edelgasregel - Oktettregel
              • 07 Atombindung
              • 08 Ionenbindung
      • 09. Klasse
          • Back
          • 1. Vom Atombau bis ZMKs
              • Back
              • 1 Das Periodensystem der Elemente (Teil I)
              • 2 Atommodelle - Wiederholung Demokrit und Dalton
              • 2.3 Rutherford: Kern-Hülle-Modell
              • 2.4 Bohr – Schalenmodell der Elektronenhülle
              • 2.5 Das Kugelwolkenmodell, KWM
              • 2.6 Das Periodensystem der Elemente (PSE) und die Atommodelle
              • 2.7 Lewis – Formeln für Moleküle
              • 3 Edelgasregel (Oktettregel)
              • 4 Atombindung = Elektronenpaarbindung
              • 4.1 Die HNO-Regel (HNO7-Regel)
              • 4.1.1 Die Elektronenpaar-Bindung und die HNO-Regel
              • 4.2 Summenformel
              • 4.3 Reaktionsgleichungen in Lewis-Schreibweise und Summenformeln
              • 4.4 Der räumliche Bau von Molekülen
              • 4.2 Atomradien
              • 4.3 Elektronegativität
              • 4.4 Polare und unpolare Atombindung
              • 4.5 Elektrische Dipole
              • 5 Ionenbindung
              • 5.0.1 Elektroneutralität 
          • 2. Redoxreaktionen
              • Back
              • 1. Magnesium und Sauerstoff
              • 1.2 Natrium + Chlor
              • 1.3 Neue Definitionen
              • 1.4 Aluminium reagiert mit Brom
              • 1.5 Ionenladungen und Formeln von Ionenverbindungen
              • 2 Bildung von Ionenverbindungen mit Nebengruppenelementen
              • 3 Redoxreaktionen mit Molekülen - Oxidationszahlen
          • 3. Säure-Base-Reaktionen
              • Back
              • Säure-Base-Reaktionen (Protolyse-Reaktionen)
              • 2 Reaktion von Chlorwasserstoff-Gas mit Ammoniak-Gas
              • 3 Reaktion von festem Ammoniumchlorid und festem Natriumhydroxid
              • 4 Allgemeine Säure-Base-Definition nach Brønsted (1923)
              • 5 Stärke von Säuren und Basen
              • 6 Chlorwasserstoff-Gas und Wasser
              • 7 Konzentration
              • 8 Neutralisation
              • 9 Bildung von Calciumhydroxid
      • 10. Klasse
          • Back
          • 1. Alkane
              • Back
              • 1.1 Methan
              • 1.4 Butan
              • 1.5 Homologe Reihe der Alkane
              • 1.6 Genfer Nomenklatur der Alkane
              • 1.6 Übungen zur Nomenklatur
              • 1.7 Eigenschaften der Alkane
              • 1.8 Angriffsfreudige Teilchen
              • 1.9 Radikalische Subsitution - Bildung von Halogenalkane
          • 2. Alkene
              • Back
              • 2.1 Ethen
              • 2.1.5 Nachweis von Alkenen (Mehrfachbindungen)
              • 2.1.6 Isomerien von Alkenen
              • 2.2 Nomenklatur der Alkene
              • 2.3 Katalytische Hydrierung
              • 2.4 Vergleich: Ethen – Ethan
          • 3. Alkine
              • Back
              • 3.1 Ethin (Acetylen)
              • 3.1.3 Herstellung
              • 3.2 Reaktionstyp bei Alkinen
          • 5 Alkohole - Alkanole
              • Back
              • 5.1 Ethanol
              • 5.1.3 Formelermittlung von Ethanol
              • 5.1.3 Formelermittlung von Ethanol - Teil II
              • 5.1.4 Versuch Ethanol reagiert mit Alkalimetall
              • 5.1.5 Induktiver Effekt
              • 5.2 Homologe Reihe der Alkohole, Alkanole
              • 5.2.4 Primäre, sekundäre und tertiäre Alkohole
              • 5.2.6 Mehrwertige Alkohole
              • 5.3 Chemische Reaktionen von Alkohol
          • 6 Carbonylverbindungen
              • Back
              • 6.1.1 Herstellung von Alkanale
              • 6.1.2 Funktionelle Gruppe der Alkanale (Aldehyde)
              • 6.1.4 Aldehydnachweise
              • 6.2 Alkanone (Ketone)
              • 6.3 Unterscheidung: Aldehyde – Ketone
          • 7 Carbonsäuren
              • Back
              • 7.1 Essigsäure – Ethansäure
              • 7.2 Funktionelle Gruppe der Monocarbonsäuren
              • 7.3 Vergleich der Siedepunkte - ZMK
              • 7.4.1 Säure-Base-Reaktionen
              • 7.4.2 Redox-Reaktion von Essigsäure mit Magnesium
      • 1. und 2. Jahrgangsstufe
          • Back
          • Elektrochemie II - Anwendungen
              • Back
              • 4 Anwendungen - 4.1 Volta-Element
              • 4.2 Bleiakkumulator
              • 4.3 Brennstoffzelle
              • 4.4 Weitere Batterien
              • 4.4.2 Alkali – Mangan-Batterie
              • 4.5 Akkumulatoren
              • 4.6 Herstellung von Stoffen mit Hilfe von erzwungene Redoxreaktionen
              • 4.6.2 Die elektrolytische Raffination von Kupfer
              • 4.7 Korrosion
              •  4.7.3 Beispiele für Elektrochemische Korrosionen
              • 4.7.4 Einfluss von Kohlenstoffdioxid auf die Korrosion
              • 4.7.5 Sauerstoff-Korrosion – Rosten von Eisen
              • 4.7.6 Korrosionsschutz
          • Energetik - Thermodynamik
              • Back
              • 1 Systeme
              • 2 Energieerhaltungssatz
              • 3 Innere Energie – U
              • 4 Volumenarbeit - W
              • 5 Reaktionswärme – Q
              • 6 Wärmekapazität
              • 7 Kalorimetrie
              • 7.2 Bestimmung der Neutralisationsenthalpie
              • 8 Enthalpie - H
              • 8.2 Endotherme Reaktionen
              • 8.3 Molare Standard-Bildungsenthalpie
              • 8.6 Satz von Hess
              • 8.6 Satz von Hess - Teil II
              • 9 Bindungsenthalpien
              • 9.2 Gitterenergien – Born-Haber-Kreispozess
              • 10 Heizwert und Brennwert
              • 11 Entropie – S
              • 11.2 Die molare Standard-Entropie
              • 12 Gibbs Energie – G
              • 12.1 Gibbs-Helmholtz: Beispiele
              • 13 Metastabile Zustände
              • 14 Zusammenfassung
          • Cycloalkane und Aromaten
              • Back
              • 1 Cycloalkane
              • 2 Aromaten
              • 2.2 Hückel-Regel
              • 2.3 Nomenklatur
              • 2.4 Heteroaromaten
              • 2.5.4 Friedel-Crafts-Alkylierung
              • 2.6 Phenole
              • 2.7 Anilin
              • 2.5 Benzolderivate durch elektrophile Substitution
          • Gleichgewichtsreaktionen
              • Back
              • 01 Umkehrbare Reaktionen
              • 01.2 Beispiel Calciumhydroxid
              • 2 Gleichgewichtsreaktionen
              • 2.3 Modellexperiment - Stechheberversuch
              • 2.4 Merkmale eines chemischen Gleichgewichts
              • 2.5 Estergleichgewicht
              • 2.6 und 2.7 Schreibweise und Kollisionsmodell
              • 2.9 Benzoesäure-Gleichgewicht
              • 2.10 Verschiebung des Gleichgewichts
              • 2.11 Prinzip von Le Chatelier
              • 2.12 Massenwirkungsgesetz (MWG)
              • 2.13.2 Ermittlung der GG-Konstante Kc
              • 2.14 Berechnungen zum Massenwirkungsgesetz
              • 2.15 Die Ammoniaksynthese
          • Säure-Base-Reaktionen
              • Back
              • 1. Autoprotolyse des Wassers
              • 2. Der pH-Wert
              • 3 Protolyse-Reaktionen
              • 3.2 Ammoniak-Gas + Wasser
              • 3.3 Neutralisation
              • 3.4 Mehrprotonige Säuren
              • 3.5 Stärke von Säuren und Basen
              • 4 Stärke von Säuren und Basen
              • 4.2 Basestärke: der pKB-Wert
              • 4.4 pH-Wert unterschiedlich starke Säuren
              • 4.5 Säure-Base-Reaktionen in Salzlösungen
              • 4.6 Zusammenfassung
              • 5 Indikatoren
              • 6 Säure-Base-Titration
              • 7 Pufferlösung
          • Naturstoffe
              • Back
              • 01 Isomerie
              • 02 Fischer-Projektion
              • 03 Optische Aktivität, Polarimeter und Racemat
              • 04 Kohlenhydrate eine Übersicht
              • 04.1 Monosaccharide - Glucose
              • 04.1 Halbacetalbildung
              • 04.1 Ringstruktur der Monosaccharide
              • 04.1 Systematik der Namensgebung
              • 04.1 Fructose und Keto-Enol-Tautomerie
              • 04.1 Reaktionen der Monosaccharide
              • 04.1 Glycosidbindung - Vollacetal
              • 04.2 Disaccharide
              • 04.2 Saccharose
              • 04.3 Polysaccharide - Amylose
              • 04.3 Cellulose
          • Naturstoffe II
              • Back
              • 5 Proteine
              • 5.1.6 Aminosäure sind Ampholyte
              • 5.1.7 Isoelektrischer Punkt
              • 5.1.9 Nachweisreaktionen
              • 5.2 Peptide
              • 5.2.4 Einteilung der Peptide
              • 5.3 Eiweiße
              • 5.3.4 Primärstruktur
              • 5.3.11 Enzyme
              • 6 Nucleinsäure
              • 7 Lipide
          • Elektrochemie - Übersicht
              • Back
              • 1 Freiwillig ablaufende Reaktionen
              • 1 Freiwillig ablaufende Reaktionen Teil b
              • 1.2 Erstellung einer Redoxreihe
              • 1.2 Wiederholung Oxidationszahlen
              • 1.3 Stellung von H2/2 H+
              • 1.4 Weitere Redoxreaktionen
              • 2 Elektrochemische Zellen
              • 2 Metallische Bindung
              • 2.2 Standardelektrodenpotential und NHE
              • 2.3.1 Standardelektronenpotential von Kupfer
              • 2.4 Die elektromotorische Kraft (EMK)
              • 2.5 Elektrochemische Spannungsreihe der Metalle
              • 2.5.1 Standardelektrodenpotential der Chlorknallgaszelle
              • 2.5.2 Anwendung der Spannungsreihe
              • 2.5.3 Zusammenfassung wichtiger Begriffe
              • 2.6 Konzentrationszelle
              • 2.7 Nernst-Gleichung
              • 3 Elektrolyse
              • 3.3 Zersetzungsspannung
  • PSE
  • Biologie
      • Back
      • Themen
      • 7. Klasse
          • Back
          • 1 Zelluläre Organisation von Lebewesen
              • Back
              • 1.1 Mikroskopieren und Protokollieren
              • 1.2 Aufbau von Zellen
      • 9. Klasse
          • Back
          • Genetik
              • Back
              • 1 Erbinformation
              • 2 Chromosom
              • 3 Formen des Wachstums
              • 3.1.1 Mitose
              • 3.1.2 Die Meiose
              • 3.1.3 Rekombination (Neukombination)
              • 4 Klassische Genetik - Vokabeln
              • 4.1 Dominant-rezessiver-Erbgang
              • 4.1.2 Rückkreuzung
              • 4.1.3 Dihybrider Erbgang
              • 4.2 Intermediärer Erbgang
              • 5 Humangenetik – Stammbaumanalyse
              • 6 Molekulargenetik - Aufbau der DNA
              • 6.2 Vom Gen zum Merkmal
      • 1. und 2. Jahrgangsstufe
          • Back
          • Exkurs: Fotosynthese
  • NWT
  • Software & Tutorials
      • Back
      • Chemsketch-Tutorial
      • OpenOffice - Writer - Tutorial
      • HTML5-Spielwiese
      • HTML5-Spielwiese Teil 2
  • Fotos
  • Suche
  1. Aktuelle Seite:  
  2. Home
  3. Chemie
  4. 10. Klasse
  5. Chemie
  6. Chemie extern
  7. Chemie Themen
  8. 1. und 2. Kursstufe
  9. Energetik-Thermodynamik

Energetische Betrachtungen bei chemischen Reaktionen

2 H₂ + O₂ → 2 H₂O + unterschiedliche Formen v. Energie

01 ta energieformen


1 Systeme

Einen begrenzten Ausschnitt des Universums nennt man ein Systeme¹, den verbleibenden Rest Umgebung.

 

offenes System  geschlossenes System

abgeschlossenes (isoliertes)
System

 Austausch von:

+ Energie
+ Teilchen 

 + Energie  ---
 Kein Austausch von:  ---  - Teilchen  - Energie
 - Teilchen
 → Gesamtenergie ist konstant
   01 ta systeme - reagenzglaeser
 idealisierte Beispiele  "Kochtopf"  "Dampfkochtopf"  "Thermoskanne"

 

 ------------------
¹ System (v. griech. systema, „das Gebilde, Zusammengestellte, Verbundene“)

 

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 26. August 2012

2 Energieerhaltungssatz (Energieprinzip)

Er besagt, dass in einem abgeschlossenen (isolierten) System die Summe der Energien konstant ist. (von Mayer, Joule, Helmholtz)

1. Hauptsatz der Thermodynamik:
Es kann bei keinem physikalischen und chemischen Vorgang Energie neu entstehen oder vergehen, nur die Form der Energie (z.B. mechanische, thermische, elektrische, chemische,...) kann sich ändern.

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 26. August 2012

3 Innere Energie – U

Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert = Innere Energie U, 
äußere Energie = potenzielle Energie (wie z.B. Eisenblock auf dem Schrank) + kinetische Energie (z.B. der Eisenblock fliegt runter) ⇨ spielt keine Rolle für chemische Reaktionen.

Man unterscheidet vereinfacht:

  • den physikalisch-thermischen (Bsp.: Rotationsenergie, Schwingungsenergie), Uth 
  • den chemischen (die potentielle Energie der Bindungskräfte bzw. die Bindungsenergie) Uch und 
  • den kernphysikalischen (potentielle Energie, die in den Atomkernen vorhanden) UK


.....Anteil der inneren Energie (U = UK + Uch + Uth)

Es lässt sich kein Absolutbetrag U stofflicher Systeme angeben, da sich kein Energienullpunkt festlegen lässt. Bestimmbar sind nur Änderungen der inneren Energie ΔU

02 ta freie energie schema

 

ΔU = U₂ – U₁

ΔU > 0 : Energie wird aufgenommen
ΔU < 0 : Energie wird abgegeben

U₂: Summe der inneren Energien der Produkte
U₁: Summe der inneren Energien der Reaktanden (Edukte)
Änderung der inneren Energie = Wärme + Arbeit
ΔU = U₂ – U₁ = Q + W

Innere Energie = Zustandsgröße
Zustandsgrößen: in einem bestimmten Zustand hat die Zustandsgröße einen bestimmten Wert. Dabei ist es egal, wie man diesen Zustand erreicht hat, also welchen Weg dafür beschritten hat.

Bsp.: Für die momentane potentielle Energie einer Person auf einem Berggipfel (Zustandsgröße) ist es gleichgültig, auf welchem Weg die Person den Gipfel erreicht hat. Die aufgewendete Arbeit hingegen, die die Person aufbringen muss, um diese potentielle Energie zu erreichen, hängt natürlich vom zurückgelegten Weg ab.

Zustandsgrößen: Volumen, Druck, Temperatur sind unabhängig von der Vorgeschichte des Systems (ob es vorher 50°C oder 20°C war).

Die Arbeit ist bei chemischen Reaktionen meistens Volumenarbeit.

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 26. August 2012

4 Volumenarbeit - W


Def.: 

  • isobar = gleicher Druck [gr. isos = gleich; barys = schwer]
  • isotherm = gleiche Temperatur;
  • isochor = gleiches Volumen

Volumenänderung bei konstanten Druck (= isobar : p = const.):

ΔV = V₂ – V₁

02 ta volumenarbeit


Ein externer Druck übt eine der Ausdehnung entgegengesetzte Kraft aus. Für uns ist das i.d.R. der Atmosphärendruck (= Konstant) (für ein sich ändernder Außendruck = reversibler Vorgang ist dann die UNI zuständig).
Ist der externe Druck 0 (= Vakuum), wir keine Arbeit verrichtet!


Allgemein:
Vom System abgegebene Energie ⇨ negatives Vorzeichen
Da bei Volumenvergrößerung V₂ – V₁ > 0 vom System Volumenarbeit an die Umgebung abgeführt wird, wird die Volumenarbeit mit einem negativen Vorzeichen definiert.


W = Wmech = - p • ΔV


Bei Volumenabnahme wird dem System Volumenarbeit zugeführt (von der Umgebung)

Herleitung:

Querschnitt des Kolbens: A
Von außen auf den Kolben wirkende Kraft: F = A · p
Wenn der Kolben um eine Wegstrecke s nach außen geschoben wird: ΔV = V₂ – V₁ = A ∙ s

Geleistete Arbeit = Kraft x Strecke = Fläche x Druck x Strecke = Fläche x Strecke x Druck = Volumenänderung x Druck
W = F ∙ s = A ∙ p ∙ s = ΔV ∙ p

 

ΔU = Q – p ∙ ΔV

 

Gegendruck = Atmosphärendruck: 
101325 Pa = 1013,25 hPa (Hektopascal) = 1,01325 bar = 1013,25 mbar
(= Normalbedingung (T = 0°C); = Standardbedingung (T=25 °C))
1 atm = 1,01325 • 10⁵ Pa = 101 325 Pa

SI-Einheiten:
Druck: 1 Pa (=1 kg/(m•s²) = 1 N/m²)

 

 

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 11. September 2013

5 Reaktionswärme – Q

Bestimmung der Reaktionswärme – Q. 
Bsp: Quantitative Umsetzung von Zink (n(Zn) = 1mol, M(Zn) = 65,4 g/mol) anfällt.

Bildung eines gasförmigen Reaktionsproduktes

  1. bei konstantem Volumen = Hahn geschlossen
  2. bei konstantem Druck = Hahn geöffnet

 02-ta-experiment--calcium-und-salzsaeure--zink-und-salzsaeure

Teilchengleichung:

Zn + 2 H₃O⁺ (aq) + 2 Cl⁻ (aq) → Zn²⁺ (aq) + 2 Cl⁻ (aq) + 2 H₂O + H₂


Freigesetze Reaktionswärme:
bei konstantem Volumen: QV = -156,5 kJ/mol = ΔU
Änderung der Inneren Energie = Reaktionswärme + Volumenarbeit
ΔU = QV + W
ΔU = QV - p ∙ ΔV

QV = Δ U + p ∙ 0
QV = Δ U

bei konstantem Druck: Qp = - 154,0 kJ/mol = ΔH
Bei konstanten Druck gilt:
ΔU = Qp + W
Δ U = Qp – p ∙ Δ V Umstellen nach Q
Qp = Δ U + p ∙ Δ V (= Qp = [U₂ + p ∙ V₂] – [U₁ + p ∙ V₁] )

Enthalpie H ist die spezielle Wärmeenergie bei konstantem Druck
(H von „heat“; Enthalpie: griech: En = darin; thalpos = Wärme)
Definition der Enthalpie: H = U + p ∙ V
→  Qp = H₂ – H₁ = ΔH

Prozessgrößen: Sind vom Weg abhängig (Bsp. Arbeit und Wärme) ⇨ unterschiedliche Werte, je nachdem ob man isobar oder isochor arbeitet.


a) Offene Systeme 

  • die meisten chemische Reaktionen
  • Volumenarbeit
  • nicht alles fällt als Wärmeenergie an:

05-ta-kolben--druck--offene-systeme

Das entstehende Gas leistet mech. Arbeit gegen den Atmosphärendruck. Die gleiche Arbeit wird auch geleistet, wenn der Kolben fehlt (Außenluft wird verdrängt).


Die Arbeit des Kolbens beträgt: p ∙ Δ V = Volumenarbeit

Änderung Reaktionsenthalpie = Änderung Reaktionsenergie + Volumenarbeit
Δ H = Δ U + p ∙ ΔV

Beispiel:
H₂SO₄ (l) + CaCO₃ (s) → CaSO₄ (s) + H₂O (l) + CO₂ (g)

Vm (CO₂) = 24,5 L/mol (bei 25 °C und 101,3 kPa = 101 300 N/m²);
ΔU = - 96,1 kJ/mol

Bei der Reaktion von 1 mol Schwefelsäure:

p ∙ ΔV = 101 ∙ 10³ N/m² ∙ 24,5 ∙ 10-3 m³/mol
= 2,5 ∙ 10³ J/mol ( J = N ∙ m )
= 2,5 kJ/mol

ΔH = Δ U + p ∙ ΔV
= - 96,1 kJ/mol + 2,5 kJ/mol
= - 93,6 kJ/mol

b) Geschlossene Systeme
• keine mechanische Arbeit ⇨ Δ V = 0
• Die bei einer chemischen Reaktion gesamte freigesetzte Energie kann als Wärmeenergie anfallen (Ausnahme: z.B. Lichtenergie)
• Gesamtenergie = Reaktionsenergie ΔU (vgl. oben)
Δ Q = Δ U + p ∙ 0
Δ Q = Δ U

Merke: Die Energiemenge, die ein System bei konstantem Druck als Wärme an die Umgebung abgibt oder von ihr aufnimmt, wird Reaktionsenthalpie ΔH genannt.

Beispiele für chemische Reaktionen mit Volumenarbeit:

05 folie - zusammenhang - energie

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 17. September 2013
  1. 6 spezifische Wärme und spezifische Wärmekapazität
  2. 7 Kalorimetrie
  3. 7.2 Bestimmung der Neutralisationsenthalpie
  4. 8 Enthalpie - H
Säurestärke Elektronenpaarbindung Carbonsäure Elementarteilchen Anilin HNO-Regel Doppelbindung Alkanole Ionenverbindung Oktett-Regel Brønsted-Säure Nitrobenzol Carbonyle Erlenmeyer-Regel Induktiver Effekt chemische Eigenschaften Verhältnisformel Natriumchlorid Nomenklatur Brønsted
  • Home
  • Kontakt
  • Impressum - Disclaimer
  • Datenschutzbestimmungen
  • Sitemap
© 2025 W. Hölzel - Biologie und Chemie
To Top
{cookiesinfo}